mirror of
https://github.com/open-webui/open-webui.git
synced 2025-04-01 00:19:38 +02:00
Add user related headers when calling an external embedding api
This commit is contained in:
parent
b72150c881
commit
6ca295ec59
@ -15,8 +15,9 @@ from langchain_core.documents import Document
|
||||
from open_webui.config import VECTOR_DB
|
||||
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.misc import get_last_user_message
|
||||
from open_webui.models.users import UserModel
|
||||
|
||||
from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE
|
||||
from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE, ENABLE_FORWARD_USER_INFO_HEADERS
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
@ -64,6 +65,7 @@ def query_doc(
|
||||
collection_name: str,
|
||||
query_embedding: list[float],
|
||||
k: int,
|
||||
user: UserModel=None
|
||||
):
|
||||
try:
|
||||
result = VECTOR_DB_CLIENT.search(
|
||||
@ -256,29 +258,32 @@ def get_embedding_function(
|
||||
embedding_function,
|
||||
url,
|
||||
key,
|
||||
embedding_batch_size,
|
||||
embedding_batch_size
|
||||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query: embedding_function.encode(query).tolist()
|
||||
return lambda query, user=None: embedding_function.encode(query).tolist()
|
||||
elif embedding_engine in ["ollama", "openai"]:
|
||||
func = lambda query: generate_embeddings(
|
||||
func = lambda query, user=None: generate_embeddings(
|
||||
engine=embedding_engine,
|
||||
model=embedding_model,
|
||||
text=query,
|
||||
url=url,
|
||||
key=key,
|
||||
user=user
|
||||
)
|
||||
|
||||
def generate_multiple(query, func):
|
||||
def generate_multiple(query, user, func):
|
||||
if isinstance(query, list):
|
||||
embeddings = []
|
||||
for i in range(0, len(query), embedding_batch_size):
|
||||
embeddings.extend(func(query[i : i + embedding_batch_size]))
|
||||
embeddings.extend(func(query[i : i + embedding_batch_size], user=user))
|
||||
return embeddings
|
||||
else:
|
||||
return func(query)
|
||||
return func(query, user)
|
||||
|
||||
return lambda query: generate_multiple(query, func)
|
||||
return lambda query, user=None: generate_multiple(query, user, func)
|
||||
else:
|
||||
raise ValueError(f"Unknown embedding engine: {embedding_engine}")
|
||||
|
||||
|
||||
def get_sources_from_files(
|
||||
@ -423,7 +428,7 @@ def get_model_path(model: str, update_model: bool = False):
|
||||
|
||||
|
||||
def generate_openai_batch_embeddings(
|
||||
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = ""
|
||||
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", user: UserModel = None
|
||||
) -> Optional[list[list[float]]]:
|
||||
try:
|
||||
r = requests.post(
|
||||
@ -431,6 +436,16 @@ def generate_openai_batch_embeddings(
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}",
|
||||
**(
|
||||
{
|
||||
"X-OpenWebUI-User-Name": user.name,
|
||||
"X-OpenWebUI-User-Id": user.id,
|
||||
"X-OpenWebUI-User-Email": user.email,
|
||||
"X-OpenWebUI-User-Role": user.role,
|
||||
}
|
||||
if ENABLE_FORWARD_USER_INFO_HEADERS and user
|
||||
else {}
|
||||
),
|
||||
},
|
||||
json={"input": texts, "model": model},
|
||||
)
|
||||
@ -446,7 +461,7 @@ def generate_openai_batch_embeddings(
|
||||
|
||||
|
||||
def generate_ollama_batch_embeddings(
|
||||
model: str, texts: list[str], url: str, key: str = ""
|
||||
model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
|
||||
) -> Optional[list[list[float]]]:
|
||||
try:
|
||||
r = requests.post(
|
||||
@ -454,6 +469,16 @@ def generate_ollama_batch_embeddings(
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}",
|
||||
**(
|
||||
{
|
||||
"X-OpenWebUI-User-Name": user.name,
|
||||
"X-OpenWebUI-User-Id": user.id,
|
||||
"X-OpenWebUI-User-Email": user.email,
|
||||
"X-OpenWebUI-User-Role": user.role,
|
||||
}
|
||||
if ENABLE_FORWARD_USER_INFO_HEADERS
|
||||
else {}
|
||||
),
|
||||
},
|
||||
json={"input": texts, "model": model},
|
||||
)
|
||||
@ -472,22 +497,23 @@ def generate_ollama_batch_embeddings(
|
||||
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
||||
url = kwargs.get("url", "")
|
||||
key = kwargs.get("key", "")
|
||||
user = kwargs.get("user")
|
||||
|
||||
if engine == "ollama":
|
||||
if isinstance(text, list):
|
||||
embeddings = generate_ollama_batch_embeddings(
|
||||
**{"model": model, "texts": text, "url": url, "key": key}
|
||||
**{"model": model, "texts": text, "url": url, "key": key, "user": user}
|
||||
)
|
||||
else:
|
||||
embeddings = generate_ollama_batch_embeddings(
|
||||
**{"model": model, "texts": [text], "url": url, "key": key}
|
||||
**{"model": model, "texts": [text], "url": url, "key": key, "user": user}
|
||||
)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
elif engine == "openai":
|
||||
if isinstance(text, list):
|
||||
embeddings = generate_openai_batch_embeddings(model, text, url, key)
|
||||
embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
|
||||
else:
|
||||
embeddings = generate_openai_batch_embeddings(model, [text], url, key)
|
||||
embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
|
||||
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
|
||||
|
@ -71,7 +71,7 @@ def upload_file(
|
||||
)
|
||||
|
||||
try:
|
||||
process_file(request, ProcessFileForm(file_id=id))
|
||||
process_file(request, ProcessFileForm(file_id=id), user=user)
|
||||
file_item = Files.get_file_by_id(id=id)
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
@ -193,7 +193,9 @@ async def update_file_data_content_by_id(
|
||||
if file and (file.user_id == user.id or user.role == "admin"):
|
||||
try:
|
||||
process_file(
|
||||
request, ProcessFileForm(file_id=id, content=form_data.content)
|
||||
request,
|
||||
ProcessFileForm(file_id=id, content=form_data.content),
|
||||
user=user
|
||||
)
|
||||
file = Files.get_file_by_id(id=id)
|
||||
except Exception as e:
|
||||
|
@ -285,7 +285,9 @@ def add_file_to_knowledge_by_id(
|
||||
# Add content to the vector database
|
||||
try:
|
||||
process_file(
|
||||
request, ProcessFileForm(file_id=form_data.file_id, collection_name=id)
|
||||
request,
|
||||
ProcessFileForm(file_id=form_data.file_id, collection_name=id),
|
||||
user=user
|
||||
)
|
||||
except Exception as e:
|
||||
log.debug(e)
|
||||
@ -363,7 +365,9 @@ def update_file_from_knowledge_by_id(
|
||||
# Add content to the vector database
|
||||
try:
|
||||
process_file(
|
||||
request, ProcessFileForm(file_id=form_data.file_id, collection_name=id)
|
||||
request,
|
||||
ProcessFileForm(file_id=form_data.file_id, collection_name=id),
|
||||
user=user
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
|
@ -57,7 +57,7 @@ async def add_memory(
|
||||
{
|
||||
"id": memory.id,
|
||||
"text": memory.content,
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content),
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content, user),
|
||||
"metadata": {"created_at": memory.created_at},
|
||||
}
|
||||
],
|
||||
@ -82,7 +82,7 @@ async def query_memory(
|
||||
):
|
||||
results = VECTOR_DB_CLIENT.search(
|
||||
collection_name=f"user-memory-{user.id}",
|
||||
vectors=[request.app.state.EMBEDDING_FUNCTION(form_data.content)],
|
||||
vectors=[request.app.state.EMBEDDING_FUNCTION(form_data.content, user)],
|
||||
limit=form_data.k,
|
||||
)
|
||||
|
||||
@ -105,7 +105,7 @@ async def reset_memory_from_vector_db(
|
||||
{
|
||||
"id": memory.id,
|
||||
"text": memory.content,
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content),
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content, user),
|
||||
"metadata": {
|
||||
"created_at": memory.created_at,
|
||||
"updated_at": memory.updated_at,
|
||||
@ -160,7 +160,7 @@ async def update_memory_by_id(
|
||||
{
|
||||
"id": memory.id,
|
||||
"text": memory.content,
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content),
|
||||
"vector": request.app.state.EMBEDDING_FUNCTION(memory.content, user),
|
||||
"metadata": {
|
||||
"created_at": memory.created_at,
|
||||
"updated_at": memory.updated_at,
|
||||
|
@ -660,6 +660,7 @@ def save_docs_to_vector_db(
|
||||
overwrite: bool = False,
|
||||
split: bool = True,
|
||||
add: bool = False,
|
||||
user = None,
|
||||
) -> bool:
|
||||
def _get_docs_info(docs: list[Document]) -> str:
|
||||
docs_info = set()
|
||||
@ -775,7 +776,8 @@ def save_docs_to_vector_db(
|
||||
)
|
||||
|
||||
embeddings = embedding_function(
|
||||
list(map(lambda x: x.replace("\n", " "), texts))
|
||||
list(map(lambda x: x.replace("\n", " "), texts)),
|
||||
user = user
|
||||
)
|
||||
|
||||
items = [
|
||||
@ -933,6 +935,7 @@ def process_file(
|
||||
"hash": hash,
|
||||
},
|
||||
add=(True if form_data.collection_name else False),
|
||||
user=user
|
||||
)
|
||||
|
||||
if result:
|
||||
@ -990,7 +993,7 @@ def process_text(
|
||||
text_content = form_data.content
|
||||
log.debug(f"text_content: {text_content}")
|
||||
|
||||
result = save_docs_to_vector_db(request, docs, collection_name)
|
||||
result = save_docs_to_vector_db(request, docs, collection_name, user=user)
|
||||
if result:
|
||||
return {
|
||||
"status": True,
|
||||
@ -1023,7 +1026,7 @@ def process_youtube_video(
|
||||
content = " ".join([doc.page_content for doc in docs])
|
||||
log.debug(f"text_content: {content}")
|
||||
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True, user=user)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
@ -1064,7 +1067,7 @@ def process_web(
|
||||
content = " ".join([doc.page_content for doc in docs])
|
||||
|
||||
log.debug(f"text_content: {content}")
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True, user=user)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
@ -1272,7 +1275,7 @@ def process_web_search(
|
||||
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
||||
)
|
||||
docs = loader.load()
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
||||
save_docs_to_vector_db(request, docs, collection_name, overwrite=True, user=user)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
@ -1306,7 +1309,7 @@ def query_doc_handler(
|
||||
return query_doc_with_hybrid_search(
|
||||
collection_name=form_data.collection_name,
|
||||
query=form_data.query,
|
||||
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
||||
embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(query, user=user),
|
||||
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
||||
reranking_function=request.app.state.rf,
|
||||
r=(
|
||||
@ -1314,12 +1317,14 @@ def query_doc_handler(
|
||||
if form_data.r
|
||||
else request.app.state.config.RELEVANCE_THRESHOLD
|
||||
),
|
||||
user=user
|
||||
)
|
||||
else:
|
||||
return query_doc(
|
||||
collection_name=form_data.collection_name,
|
||||
query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query),
|
||||
query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query, user=user),
|
||||
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
||||
user=user
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
@ -1348,7 +1353,7 @@ def query_collection_handler(
|
||||
return query_collection_with_hybrid_search(
|
||||
collection_names=form_data.collection_names,
|
||||
queries=[form_data.query],
|
||||
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
||||
embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(query, user=user),
|
||||
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
||||
reranking_function=request.app.state.rf,
|
||||
r=(
|
||||
@ -1361,7 +1366,7 @@ def query_collection_handler(
|
||||
return query_collection(
|
||||
collection_names=form_data.collection_names,
|
||||
queries=[form_data.query],
|
||||
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
||||
embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(query,user=user),
|
||||
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
||||
)
|
||||
|
||||
@ -1509,6 +1514,7 @@ def process_files_batch(
|
||||
docs=all_docs,
|
||||
collection_name=collection_name,
|
||||
add=True,
|
||||
user=user,
|
||||
)
|
||||
|
||||
# Update all files with collection name
|
||||
|
@ -630,7 +630,7 @@ async def chat_completion_files_handler(
|
||||
lambda: get_sources_from_files(
|
||||
files=files,
|
||||
queries=queries,
|
||||
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
||||
embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(query,user=user),
|
||||
k=request.app.state.config.TOP_K,
|
||||
reranking_function=request.app.state.rf,
|
||||
r=request.app.state.config.RELEVANCE_THRESHOLD,
|
||||
|
Loading…
x
Reference in New Issue
Block a user