This commit is contained in:
Timothy J. Baek 2024-09-28 02:23:09 +02:00
parent 1b349016ff
commit af57a2c153
28 changed files with 1026 additions and 993 deletions

View File

@ -0,0 +1,183 @@
import requests
import logging
from langchain_community.document_loaders import (
BSHTMLLoader,
CSVLoader,
Docx2txtLoader,
OutlookMessageLoader,
PyPDFLoader,
TextLoader,
UnstructuredEPubLoader,
UnstructuredExcelLoader,
UnstructuredMarkdownLoader,
UnstructuredPowerPointLoader,
UnstructuredRSTLoader,
UnstructuredXMLLoader,
YoutubeLoader,
)
from langchain_core.documents import Document
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
known_source_ext = [
"go",
"py",
"java",
"sh",
"bat",
"ps1",
"cmd",
"js",
"ts",
"css",
"cpp",
"hpp",
"h",
"c",
"cs",
"sql",
"log",
"ini",
"pl",
"pm",
"r",
"dart",
"dockerfile",
"env",
"php",
"hs",
"hsc",
"lua",
"nginxconf",
"conf",
"m",
"mm",
"plsql",
"perl",
"rb",
"rs",
"db2",
"scala",
"bash",
"swift",
"vue",
"svelte",
"msg",
"ex",
"exs",
"erl",
"tsx",
"jsx",
"hs",
"lhs",
]
class TikaLoader:
def __init__(self, url, file_path, mime_type=None):
self.url = url
self.file_path = file_path
self.mime_type = mime_type
def load(self) -> list[Document]:
with open(self.file_path, "rb") as f:
data = f.read()
if self.mime_type is not None:
headers = {"Content-Type": self.mime_type}
else:
headers = {}
endpoint = self.url
if not endpoint.endswith("/"):
endpoint += "/"
endpoint += "tika/text"
r = requests.put(endpoint, data=data, headers=headers)
if r.ok:
raw_metadata = r.json()
text = raw_metadata.get("X-TIKA:content", "<No text content found>")
if "Content-Type" in raw_metadata:
headers["Content-Type"] = raw_metadata["Content-Type"]
log.info("Tika extracted text: %s", text)
return [Document(page_content=text, metadata=headers)]
else:
raise Exception(f"Error calling Tika: {r.reason}")
class Loader:
def __init__(self, engine: str = "", **kwargs):
self.engine = engine
self.kwargs = kwargs
def load(
self, filename: str, file_content_type: str, file_path: str
) -> list[Document]:
loader = self._get_loader(filename, file_content_type, file_path)
return loader.load()
def _get_loader(self, filename: str, file_content_type: str, file_path: str):
file_ext = filename.split(".")[-1].lower()
if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
if file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(file_path, autodetect_encoding=True)
else:
loader = TikaLoader(
url=self.kwargs.get("TIKA_SERVER_URL"),
file_path=file_path,
mime_type=file_content_type,
)
else:
if file_ext == "pdf":
loader = PyPDFLoader(
file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
)
elif file_ext == "csv":
loader = CSVLoader(file_path)
elif file_ext == "rst":
loader = UnstructuredRSTLoader(file_path, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(file_path)
elif file_ext in ["htm", "html"]:
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(file_path)
elif file_content_type == "application/epub+zip":
loader = UnstructuredEPubLoader(file_path)
elif (
file_content_type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file_ext == "docx"
):
loader = Docx2txtLoader(file_path)
elif file_content_type in [
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
] or file_ext in ["xls", "xlsx"]:
loader = UnstructuredExcelLoader(file_path)
elif file_content_type in [
"application/vnd.ms-powerpoint",
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
] or file_ext in ["ppt", "pptx"]:
loader = UnstructuredPowerPointLoader(file_path)
elif file_ext == "msg":
loader = OutlookMessageLoader(file_path)
elif file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(file_path, autodetect_encoding=True)
else:
loader = TextLoader(file_path, autodetect_encoding=True)
return loader

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,81 @@
import os
import torch
import numpy as np
from colbert.infra import ColBERTConfig
from colbert.modeling.checkpoint import Checkpoint
class ColBERT:
def __init__(self, name, **kwargs) -> None:
print("ColBERT: Loading model", name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
DOCKER = kwargs.get("env") == "docker"
if DOCKER:
# This is a workaround for the issue with the docker container
# where the torch extension is not loaded properly
# and the following error is thrown:
# /root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/segmented_maxsim_cpp.so: cannot open shared object file: No such file or directory
lock_file = (
"/root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/lock"
)
if os.path.exists(lock_file):
os.remove(lock_file)
self.ckpt = Checkpoint(
name,
colbert_config=ColBERTConfig(model_name=name),
).to(self.device)
pass
def calculate_similarity_scores(self, query_embeddings, document_embeddings):
query_embeddings = query_embeddings.to(self.device)
document_embeddings = document_embeddings.to(self.device)
# Validate dimensions to ensure compatibility
if query_embeddings.dim() != 3:
raise ValueError(
f"Expected query embeddings to have 3 dimensions, but got {query_embeddings.dim()}."
)
if document_embeddings.dim() != 3:
raise ValueError(
f"Expected document embeddings to have 3 dimensions, but got {document_embeddings.dim()}."
)
if query_embeddings.size(0) not in [1, document_embeddings.size(0)]:
raise ValueError(
"There should be either one query or queries equal to the number of documents."
)
# Transpose the query embeddings to align for matrix multiplication
transposed_query_embeddings = query_embeddings.permute(0, 2, 1)
# Compute similarity scores using batch matrix multiplication
computed_scores = torch.matmul(document_embeddings, transposed_query_embeddings)
# Apply max pooling to extract the highest semantic similarity across each document's sequence
maximum_scores = torch.max(computed_scores, dim=1).values
# Sum up the maximum scores across features to get the overall document relevance scores
final_scores = maximum_scores.sum(dim=1)
normalized_scores = torch.softmax(final_scores, dim=0)
return normalized_scores.detach().cpu().numpy().astype(np.float32)
def predict(self, sentences):
query = sentences[0][0]
docs = [i[1] for i in sentences]
# Embedding the documents
embedded_docs = self.ckpt.docFromText(docs, bsize=32)[0]
# Embedding the queries
embedded_queries = self.ckpt.queryFromText([query], bsize=32)
embedded_query = embedded_queries[0]
# Calculate retrieval scores for the query against all documents
scores = self.calculate_similarity_scores(
embedded_query.unsqueeze(0), embedded_docs
)
return scores

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
from typing import Optional
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from duckduckgo_search import DDGS
from open_webui.env import SRC_LOG_LEVELS

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
import requests
from open_webui.apps.retrieval.search.main import SearchResult
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.env import SRC_LOG_LEVELS
from yarl import URL

View File

@ -3,7 +3,7 @@ from typing import Optional
from urllib.parse import urlencode
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -3,7 +3,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -3,7 +3,7 @@ from typing import Optional
from urllib.parse import urlencode
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.retrieval.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
import requests
from open_webui.apps.retrieval.search.main import SearchResult
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -0,0 +1,97 @@
import socket
import urllib.parse
import validators
from typing import Union, Sequence, Iterator
from langchain_community.document_loaders import (
WebBaseLoader,
)
from langchain_core.documents import Document
from open_webui.constants import ERROR_MESSAGES
from open_webui.config import ENABLE_RAG_LOCAL_WEB_FETCH
from open_webui.env import SRC_LOG_LEVELS
import logging
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
def validate_url(url: Union[str, Sequence[str]]):
if isinstance(url, str):
if isinstance(validators.url(url), validators.ValidationError):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
if not ENABLE_RAG_LOCAL_WEB_FETCH:
# Local web fetch is disabled, filter out any URLs that resolve to private IP addresses
parsed_url = urllib.parse.urlparse(url)
# Get IPv4 and IPv6 addresses
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname)
# Check if any of the resolved addresses are private
# This is technically still vulnerable to DNS rebinding attacks, as we don't control WebBaseLoader
for ip in ipv4_addresses:
if validators.ipv4(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
for ip in ipv6_addresses:
if validators.ipv6(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
return True
elif isinstance(url, Sequence):
return all(validate_url(u) for u in url)
else:
return False
def resolve_hostname(hostname):
# Get address information
addr_info = socket.getaddrinfo(hostname, None)
# Extract IP addresses from address information
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET]
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6]
return ipv4_addresses, ipv6_addresses
class SafeWebBaseLoader(WebBaseLoader):
"""WebBaseLoader with enhanced error handling for URLs."""
def lazy_load(self) -> Iterator[Document]:
"""Lazy load text from the url(s) in web_path with error handling."""
for path in self.web_paths:
try:
soup = self._scrape(path, bs_kwargs=self.bs_kwargs)
text = soup.get_text(**self.bs_get_text_kwargs)
# Build metadata
metadata = {"source": path}
if title := soup.find("title"):
metadata["title"] = title.get_text()
if description := soup.find("meta", attrs={"name": "description"}):
metadata["description"] = description.get(
"content", "No description found."
)
if html := soup.find("html"):
metadata["language"] = html.get("lang", "No language found.")
yield Document(page_content=text, metadata=metadata)
except Exception as e:
# Log the error and continue with the next URL
log.error(f"Error loading {path}: {e}")
def get_web_loader(
url: Union[str, Sequence[str]],
verify_ssl: bool = True,
requests_per_second: int = 2,
):
# Check if the URL is valid
if not validate_url(url):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
return SafeWebBaseLoader(
url,
verify_ssl=verify_ssl,
requests_per_second=requests_per_second,
continue_on_failure=True,
)

View File

@ -170,284 +170,6 @@ export const updateQuerySettings = async (token: string, settings: QuerySettings
return res;
};
export const processFile = async (token: string, file_id: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/file`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
file_id: file_id
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadDocToVectorDB = async (token: string, collection_name: string, file: File) => {
const data = new FormData();
data.append('file', file);
data.append('collection_name', collection_name);
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
},
body: data
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadWebToVectorDB = async (token: string, collection_name: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/web`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url,
collection_name: collection_name
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadYoutubeTranscriptionToVectorDB = async (token: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/youtube`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryDoc = async (
token: string,
collection_name: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_name: collection_name,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryCollection = async (
token: string,
collection_names: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_names: collection_names,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const scanDocs = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/scan`, {
method: 'GET',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetUploadDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetVectorDB = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const getEmbeddingConfig = async (token: string) => {
let error = null;
@ -578,14 +300,140 @@ export const updateRerankingConfig = async (token: string, payload: RerankingMod
return res;
};
export const runWebSearch = async (
export interface SearchDocument {
status: boolean;
collection_name: string;
filenames: string[];
}
export const processFile = async (token: string, file_id: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/file`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
file_id: file_id
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processDocsDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/dir`, {
method: 'GET',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const processYoutubeVideo = async (token: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/youtube`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processWeb = async (token: string, collection_name: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/web`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url,
collection_name: collection_name
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processWebSearch = async (
token: string,
query: string,
collection_name?: string
): Promise<SearchDocument | null> => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/web/search`, {
const res = await fetch(`${RAG_API_BASE_URL}/process/web/search`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
@ -613,8 +461,128 @@ export const runWebSearch = async (
return res;
};
export interface SearchDocument {
status: boolean;
collection_name: string;
filenames: string[];
}
export const queryDoc = async (
token: string,
collection_name: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_name: collection_name,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryCollection = async (
token: string,
collection_names: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_names: collection_names,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetUploadDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetVectorDB = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};

View File

@ -7,7 +7,7 @@
import { deleteAllFiles, deleteFileById } from '$lib/apis/files';
import {
getQuerySettings,
scanDocs,
processDocsDir,
updateQuerySettings,
resetVectorDB,
getEmbeddingConfig,
@ -63,7 +63,7 @@
const scanHandler = async () => {
scanDirLoading = true;
const res = await scanDocs(localStorage.token);
const res = await processDocsDir(localStorage.token);
scanDirLoading = false;
if (res) {

View File

@ -52,7 +52,7 @@
updateChatById
} from '$lib/apis/chats';
import { generateOpenAIChatCompletion } from '$lib/apis/openai';
import { runWebSearch } from '$lib/apis/retrieval';
import { processWebSearch } from '$lib/apis/retrieval';
import { createOpenAITextStream } from '$lib/apis/streaming';
import { queryMemory } from '$lib/apis/memories';
import { getAndUpdateUserLocation, getUserSettings } from '$lib/apis/users';
@ -1737,7 +1737,7 @@
});
history.messages[responseMessageId] = responseMessage;
const results = await runWebSearch(localStorage.token, searchQuery).catch((error) => {
const results = await processWebSearch(localStorage.token, searchQuery).catch((error) => {
console.log(error);
toast.error(error);

View File

@ -46,6 +46,9 @@
chatFiles.splice(fileIdx, 1);
chatFiles = chatFiles;
}}
on:click={() => {
console.log(file);
}}
/>
{/each}
</div>

View File

@ -9,7 +9,7 @@
import Models from './Commands/Models.svelte';
import { removeLastWordFromString } from '$lib/utils';
import { uploadWebToVectorDB, uploadYoutubeTranscriptionToVectorDB } from '$lib/apis/retrieval';
import { processWeb, processYoutubeVideo } from '$lib/apis/retrieval';
export let prompt = '';
export let files = [];
@ -41,7 +41,7 @@
try {
files = [...files, doc];
const res = await uploadWebToVectorDB(localStorage.token, '', url);
const res = await processWeb(localStorage.token, '', url);
if (res) {
doc.status = 'processed';
@ -69,7 +69,7 @@
try {
files = [...files, doc];
const res = await uploadYoutubeTranscriptionToVectorDB(localStorage.token, url);
const res = await processYoutubeVideo(localStorage.token, url);
if (res) {
doc.status = 'processed';

View File

@ -8,8 +8,6 @@
export let colorClassName = 'bg-white dark:bg-gray-800';
export let url: string | null = null;
export let clickHandler: Function | null = null;
export let dismissible = false;
export let status = 'processed';
@ -17,7 +15,7 @@
export let type: string;
export let size: number;
function formatSize(size) {
const formatSize = (size) => {
if (size == null) return 'Unknown size';
if (typeof size !== 'number' || size < 0) return 'Invalid size';
if (size === 0) return '0 B';
@ -29,7 +27,7 @@
unitIndex++;
}
return `${size.toFixed(1)} ${units[unitIndex]}`;
}
};
</script>
<div class="relative group">
@ -37,17 +35,7 @@
class="h-14 {className} flex items-center space-x-3 {colorClassName} rounded-xl border border-gray-100 dark:border-gray-800 text-left"
type="button"
on:click={async () => {
if (clickHandler === null) {
if (url) {
if (type === 'file') {
window.open(`${url}/content`, '_blank').focus();
} else {
window.open(`${url}`, '_blank').focus();
}
}
} else {
clickHandler();
}
dispatch('click');
}}
>
<div class="p-4 py-[1.1rem] bg-red-400 text-white rounded-l-xl">