Files

450 lines
16 KiB
C

#include "roger.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include "../blocks/custom_btn_i.h"
#define TAG "SubGhzProtocolRoger"
static const SubGhzBlockConst subghz_protocol_roger_const = {
.te_short = 500,
.te_long = 1000,
.te_delta = 270,
.min_count_bit_for_found = 28,
};
struct SubGhzProtocolDecoderRoger {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderRoger {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
RogerDecoderStepReset = 0,
RogerDecoderStepSaveDuration,
RogerDecoderStepCheckDuration,
} RogerDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_roger_decoder = {
.alloc = subghz_protocol_decoder_roger_alloc,
.free = subghz_protocol_decoder_roger_free,
.feed = subghz_protocol_decoder_roger_feed,
.reset = subghz_protocol_decoder_roger_reset,
.get_hash_data = subghz_protocol_decoder_roger_get_hash_data,
.serialize = subghz_protocol_decoder_roger_serialize,
.deserialize = subghz_protocol_decoder_roger_deserialize,
.get_string = subghz_protocol_decoder_roger_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_roger_encoder = {
.alloc = subghz_protocol_encoder_roger_alloc,
.free = subghz_protocol_encoder_roger_free,
.deserialize = subghz_protocol_encoder_roger_deserialize,
.stop = subghz_protocol_encoder_roger_stop,
.yield = subghz_protocol_encoder_roger_yield,
};
const SubGhzProtocol subghz_protocol_roger = {
.name = SUBGHZ_PROTOCOL_ROGER_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_roger_decoder,
.encoder = &subghz_protocol_roger_encoder,
};
void* subghz_protocol_encoder_roger_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderRoger* instance = malloc(sizeof(SubGhzProtocolEncoderRoger));
instance->base.protocol = &subghz_protocol_roger;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_roger_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderRoger* instance = context;
free(instance->encoder.upload);
free(instance);
}
// Get custom button code
static uint8_t subghz_protocol_roger_get_btn_code(void) {
uint8_t custom_btn_id = subghz_custom_btn_get();
uint8_t original_btn_code = subghz_custom_btn_get_original();
uint8_t btn = original_btn_code;
// Set custom button
if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK) && (original_btn_code != 0)) {
// Restore original button code
btn = original_btn_code;
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) {
switch(original_btn_code) {
case 0x1:
btn = 0x2;
break;
case 0x2:
btn = 0x1;
break;
case 0x4:
btn = 0x1;
break;
case 0x8:
btn = 0x1;
break;
default:
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_DOWN) {
switch(original_btn_code) {
case 0x1:
btn = 0x4;
break;
case 0x2:
btn = 0x4;
break;
case 0x4:
btn = 0x2;
break;
case 0x8:
btn = 0x4;
break;
default:
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_LEFT) {
switch(original_btn_code) {
case 0x1:
btn = 0x8;
break;
case 0x2:
btn = 0x8;
break;
case 0x4:
btn = 0x8;
break;
case 0x8:
btn = 0x2;
break;
default:
break;
}
}
return btn;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderRoger instance
*/
static void subghz_protocol_encoder_roger_get_upload(SubGhzProtocolEncoderRoger* instance) {
furi_assert(instance);
size_t index = 0;
uint8_t btn = instance->generic.btn;
// Save original button for later use
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(btn);
}
// Get custom button code
// This will override the btn variable if a custom button is set
btn = subghz_protocol_roger_get_btn_code();
// If End is not == button - transmit as is, no custom button allowed
// For "End" values 23 and 20 - transmit correct ending used for their buttons
if((instance->generic.data & 0xFF) == instance->generic.btn) {
instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) |
btn;
} else if(((instance->generic.data & 0xFF) == 0x23) && btn == 0x1) {
instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) |
0x20;
} else if(((instance->generic.data & 0xFF) == 0x20) && btn == 0x2) {
instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) |
0x23;
}
// Send key and GAP
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
// Send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_roger_const.te_long);
if(i == 1) {
//Send gap if bit was last
instance->encoder.upload[index++] = level_duration_make(
false, (uint32_t)subghz_protocol_roger_const.te_short * 19);
} else {
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_roger_const.te_short);
}
} else {
// Send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_roger_const.te_short);
if(i == 1) {
//Send gap if bit was last
instance->encoder.upload[index++] = level_duration_make(
false, (uint32_t)subghz_protocol_roger_const.te_short * 19);
} else {
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_roger_const.te_long);
}
}
}
instance->encoder.size_upload = index;
return;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_roger_check_remote_controller(SubGhzBlockGeneric* instance) {
// Roger Decoder
// 2025.07 - @xMasterX (MMX)
// Key samples
// 0010001111111001 0001 00100000 // S/N: 0x23F9 Btn: 0x1 End: 0x20
// 0010001111111001 0010 00100011 // S/N: 0x23F9 Btn: 0x2 End: 0x23
// 0101011001010110 0001 00000001 // S/N: 0x5656 Btn: 0x1 End: 0x01
// 0101011001010110 0010 00000010 // S/N: 0x5656 Btn: 0x2 End: 0x02
// 0000110111111110 0001 00000001 // S/N: 0x0DFE Btn: 0x1 End: 0x01
// 0000110111111110 0100 00000100 // S/N: 0x0DFE Btn: 0x4 End: 0x04
// 0000110111111110 0010 00000010 // S/N: 0x0DFE Btn: 0x2 End: 0x02
// 0000110111111110 1000 00001000 // S/N: 0x0DFE Btn: 0x8 End: 0x08
instance->serial = instance->data >> 12;
instance->btn = (instance->data >> 8) & 0xF;
// Save original button for later use
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(instance->btn);
}
subghz_custom_btn_set_max(3);
}
SubGhzProtocolStatus
subghz_protocol_encoder_roger_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderRoger* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_roger_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_roger_check_remote_controller(&instance->generic);
subghz_protocol_encoder_roger_get_upload(instance);
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_roger_stop(void* context) {
SubGhzProtocolEncoderRoger* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_roger_yield(void* context) {
SubGhzProtocolEncoderRoger* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_roger_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderRoger* instance = malloc(sizeof(SubGhzProtocolDecoderRoger));
instance->base.protocol = &subghz_protocol_roger;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_roger_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
free(instance);
}
void subghz_protocol_decoder_roger_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
instance->decoder.parser_step = RogerDecoderStepReset;
}
void subghz_protocol_decoder_roger_feed(void* context, bool level, volatile uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
switch(instance->decoder.parser_step) {
case RogerDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_roger_const.te_short * 19) <
subghz_protocol_roger_const.te_delta * 5)) {
//Found GAP
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = RogerDecoderStepSaveDuration;
}
break;
case RogerDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = RogerDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = RogerDecoderStepReset;
}
break;
case RogerDecoderStepCheckDuration:
if(!level) {
// Bit 1 is long and short timing = 1000us HIGH (te_last) and 500us LOW
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_long) <
subghz_protocol_roger_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_roger_const.te_short) <
subghz_protocol_roger_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = RogerDecoderStepSaveDuration;
// Bit 0 is short and long timing = 500us HIGH (te_last) and 1000us LOW
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_short) <
subghz_protocol_roger_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_roger_const.te_long) <
subghz_protocol_roger_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = RogerDecoderStepSaveDuration;
} else if(
// End of the key
DURATION_DIFF(duration, subghz_protocol_roger_const.te_short * 19) <
subghz_protocol_roger_const.te_delta * 5) {
//Found next GAP and add bit 1 or 0
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_long) <
subghz_protocol_roger_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
}
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_short) <
subghz_protocol_roger_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
}
// If got full 28 bits key reading is finished
if(instance->decoder.decode_count_bit ==
subghz_protocol_roger_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = RogerDecoderStepReset;
} else {
instance->decoder.parser_step = RogerDecoderStepReset;
}
} else {
instance->decoder.parser_step = RogerDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_roger_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_roger_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
SubGhzProtocolStatus
subghz_protocol_decoder_roger_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
return subghz_block_generic_deserialize_check_count_bit(
&instance->generic, flipper_format, subghz_protocol_roger_const.min_count_bit_for_found);
}
void subghz_protocol_decoder_roger_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderRoger* instance = context;
subghz_protocol_roger_check_remote_controller(&instance->generic);
furi_string_cat_printf(
output,
"%s %db\r\n"
"Key: 0x%07lX\r\n"
"Serial: 0x%04lX\r\n"
"End: 0x%02lX\r\n"
"Btn: %01X",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data & 0xFFFFFFF),
instance->generic.serial,
(uint32_t)(instance->generic.data & 0xFF),
instance->generic.btn);
}