mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-12-13 14:14:00 +01:00
Improved microbenchmarking with multiple features.
* inline performance critical code * Average runtime is specified and used to calculate iterations. * Console: show median of multiple runs * plot: show box plot * filter benchmarks * specify scaling factor * ignore src/test and src/bench in command line check script * number of iterations instead of time * Replaced runtime in BENCHMARK makro number of iterations. * Added -? to bench_bitcoin * Benchmark plotly.js URL, width, height can be customized * Fixed incorrect precision warning
This commit is contained in:
@@ -8,98 +8,136 @@
|
||||
#include <assert.h>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <algorithm>
|
||||
#include <regex>
|
||||
#include <numeric>
|
||||
|
||||
benchmark::BenchRunner::BenchmarkMap &benchmark::BenchRunner::benchmarks() {
|
||||
static std::map<std::string, benchmark::BenchFunction> benchmarks_map;
|
||||
void benchmark::ConsolePrinter::header()
|
||||
{
|
||||
std::cout << "# Benchmark, evals, iterations, total, min, max, median" << std::endl;
|
||||
}
|
||||
|
||||
void benchmark::ConsolePrinter::result(const State& state)
|
||||
{
|
||||
auto results = state.m_elapsed_results;
|
||||
std::sort(results.begin(), results.end());
|
||||
|
||||
double total = state.m_num_iters * std::accumulate(results.begin(), results.end(), 0.0);
|
||||
|
||||
double front = 0;
|
||||
double back = 0;
|
||||
double median = 0;
|
||||
|
||||
if (!results.empty()) {
|
||||
front = results.front();
|
||||
back = results.back();
|
||||
|
||||
size_t mid = results.size() / 2;
|
||||
median = results[mid];
|
||||
if (0 == results.size() % 2) {
|
||||
median = (results[mid] + results[mid + 1]) / 2;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << std::setprecision(6);
|
||||
std::cout << state.m_name << ", " << state.m_num_evals << ", " << state.m_num_iters << ", " << total << ", " << front << ", " << back << ", " << median << std::endl;
|
||||
}
|
||||
|
||||
void benchmark::ConsolePrinter::footer() {}
|
||||
benchmark::PlotlyPrinter::PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height)
|
||||
: m_plotly_url(plotly_url), m_width(width), m_height(height)
|
||||
{
|
||||
}
|
||||
|
||||
void benchmark::PlotlyPrinter::header()
|
||||
{
|
||||
std::cout << "<html><head>"
|
||||
<< "<script src=\"" << m_plotly_url << "\"></script>"
|
||||
<< "</head><body><div id=\"myDiv\" style=\"width:" << m_width << "px; height:" << m_height << "px\"></div>"
|
||||
<< "<script> var data = ["
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
void benchmark::PlotlyPrinter::result(const State& state)
|
||||
{
|
||||
std::cout << "{ " << std::endl
|
||||
<< " name: '" << state.m_name << "', " << std::endl
|
||||
<< " y: [";
|
||||
|
||||
const char* prefix = "";
|
||||
for (const auto& e : state.m_elapsed_results) {
|
||||
std::cout << prefix << std::setprecision(6) << e;
|
||||
prefix = ", ";
|
||||
}
|
||||
std::cout << "]," << std::endl
|
||||
<< " boxpoints: 'all', jitter: 0.3, pointpos: 0, type: 'box',"
|
||||
<< std::endl
|
||||
<< "}," << std::endl;
|
||||
}
|
||||
|
||||
void benchmark::PlotlyPrinter::footer()
|
||||
{
|
||||
std::cout << "]; var layout = { showlegend: false, yaxis: { rangemode: 'tozero', autorange: true } };"
|
||||
<< "Plotly.newPlot('myDiv', data, layout);"
|
||||
<< "</script></body></html>";
|
||||
}
|
||||
|
||||
|
||||
benchmark::BenchRunner::BenchmarkMap& benchmark::BenchRunner::benchmarks()
|
||||
{
|
||||
static std::map<std::string, Bench> benchmarks_map;
|
||||
return benchmarks_map;
|
||||
}
|
||||
|
||||
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
|
||||
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func, uint64_t num_iters_for_one_second)
|
||||
{
|
||||
benchmarks().insert(std::make_pair(name, func));
|
||||
benchmarks().insert(std::make_pair(name, Bench{func, num_iters_for_one_second}));
|
||||
}
|
||||
|
||||
void
|
||||
benchmark::BenchRunner::RunAll(benchmark::duration elapsedTimeForOne)
|
||||
void benchmark::BenchRunner::RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only)
|
||||
{
|
||||
perf_init();
|
||||
if (std::ratio_less_equal<benchmark::clock::period, std::micro>::value) {
|
||||
if (!std::ratio_less_equal<benchmark::clock::period, std::micro>::value) {
|
||||
std::cerr << "WARNING: Clock precision is worse than microsecond - benchmarks may be less accurate!\n";
|
||||
}
|
||||
std::cout << "#Benchmark" << "," << "count" << "," << "min(ns)" << "," << "max(ns)" << "," << "average(ns)" << ","
|
||||
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n";
|
||||
|
||||
for (const auto &p: benchmarks()) {
|
||||
State state(p.first, elapsedTimeForOne);
|
||||
p.second(state);
|
||||
std::regex reFilter(filter);
|
||||
std::smatch baseMatch;
|
||||
|
||||
printer.header();
|
||||
|
||||
for (const auto& p : benchmarks()) {
|
||||
if (!std::regex_match(p.first, baseMatch, reFilter)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint64_t num_iters = static_cast<uint64_t>(p.second.num_iters_for_one_second * scaling);
|
||||
if (0 == num_iters) {
|
||||
num_iters = 1;
|
||||
}
|
||||
State state(p.first, num_evals, num_iters, printer);
|
||||
if (!is_list_only) {
|
||||
p.second.func(state);
|
||||
}
|
||||
printer.result(state);
|
||||
}
|
||||
|
||||
printer.footer();
|
||||
|
||||
perf_fini();
|
||||
}
|
||||
|
||||
bool benchmark::State::KeepRunning()
|
||||
bool benchmark::State::UpdateTimer(const benchmark::time_point current_time)
|
||||
{
|
||||
if (count & countMask) {
|
||||
++count;
|
||||
return true;
|
||||
}
|
||||
time_point now;
|
||||
if (m_start_time != time_point()) {
|
||||
std::chrono::duration<double> diff = current_time - m_start_time;
|
||||
m_elapsed_results.push_back(diff.count() / m_num_iters);
|
||||
|
||||
uint64_t nowCycles;
|
||||
if (count == 0) {
|
||||
lastTime = beginTime = now = clock::now();
|
||||
lastCycles = beginCycles = nowCycles = perf_cpucycles();
|
||||
}
|
||||
else {
|
||||
now = clock::now();
|
||||
auto elapsed = now - lastTime;
|
||||
auto elapsedOne = elapsed / (countMask + 1);
|
||||
if (elapsedOne < minTime) minTime = elapsedOne;
|
||||
if (elapsedOne > maxTime) maxTime = elapsedOne;
|
||||
|
||||
// We only use relative values, so don't have to handle 64-bit wrap-around specially
|
||||
nowCycles = perf_cpucycles();
|
||||
uint64_t elapsedOneCycles = (nowCycles - lastCycles) / (countMask + 1);
|
||||
if (elapsedOneCycles < minCycles) minCycles = elapsedOneCycles;
|
||||
if (elapsedOneCycles > maxCycles) maxCycles = elapsedOneCycles;
|
||||
|
||||
if (elapsed*128 < maxElapsed) {
|
||||
// If the execution was much too fast (1/128th of maxElapsed), increase the count mask by 8x and restart timing.
|
||||
// The restart avoids including the overhead of this code in the measurement.
|
||||
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
|
||||
count = 0;
|
||||
minTime = duration::max();
|
||||
maxTime = duration::zero();
|
||||
minCycles = std::numeric_limits<uint64_t>::max();
|
||||
maxCycles = std::numeric_limits<uint64_t>::min();
|
||||
return true;
|
||||
}
|
||||
if (elapsed*16 < maxElapsed) {
|
||||
uint64_t newCountMask = ((countMask<<1)|1) & ((1LL<<60)-1);
|
||||
if ((count & newCountMask)==0) {
|
||||
countMask = newCountMask;
|
||||
}
|
||||
if (m_elapsed_results.size() == m_num_evals) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
lastTime = now;
|
||||
lastCycles = nowCycles;
|
||||
++count;
|
||||
|
||||
if (now - beginTime < maxElapsed) return true; // Keep going
|
||||
|
||||
--count;
|
||||
|
||||
assert(count != 0 && "count == 0 => (now == 0 && beginTime == 0) => return above");
|
||||
|
||||
// Output results
|
||||
// Duration casts are only necessary here because hardware with sub-nanosecond clocks
|
||||
// will lose precision.
|
||||
int64_t min_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(minTime).count();
|
||||
int64_t max_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(maxTime).count();
|
||||
int64_t avg_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>((now-beginTime)/count).count();
|
||||
int64_t averageCycles = (nowCycles-beginCycles)/count;
|
||||
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << min_elapsed << "," << max_elapsed << "," << avg_elapsed << ","
|
||||
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
|
||||
std::cout.copyfmt(std::ios(nullptr));
|
||||
|
||||
return false;
|
||||
m_num_iters_left = m_num_iters - 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user