mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-19 23:03:45 +01:00
feefrac: support both rounding up and down for Evaluate
Co-Authored-By: l0rinc <pap.lorinc@gmail.com>
This commit is contained in:
@@ -110,20 +110,24 @@ FUZZ_TARGET(feefrac_div_fallback)
|
||||
{
|
||||
// Verify the behavior of FeeFrac::DivFallback over all possible inputs.
|
||||
|
||||
// Construct a 96-bit signed value num, and positive 31-bit value den.
|
||||
// Construct a 96-bit signed value num, a positive 31-bit value den, and rounding mode.
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
auto num_high = provider.ConsumeIntegral<int64_t>();
|
||||
auto num_low = provider.ConsumeIntegral<uint32_t>();
|
||||
std::pair<int64_t, uint32_t> num{num_high, num_low};
|
||||
auto den = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
|
||||
auto round_down = provider.ConsumeBool();
|
||||
|
||||
// Predict the sign of the actual result.
|
||||
bool is_negative = num_high < 0;
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
|
||||
// value of the quotient is the rounded-up quotient of the absolute values.
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative and we are
|
||||
// rounding down, or positive and we are rounding up, the absolute value of the quotient is
|
||||
// the rounded-up quotient of the absolute values.
|
||||
auto num_abs = Abs256(num);
|
||||
auto den_abs = Abs256(den);
|
||||
auto quot_abs = is_negative ? (num_abs + den_abs - 1) / den_abs : num_abs / den_abs;
|
||||
auto quot_abs = (is_negative == round_down) ?
|
||||
(num_abs + den_abs - 1) / den_abs :
|
||||
num_abs / den_abs;
|
||||
|
||||
// If the result is not representable by an int64_t, bail out.
|
||||
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
|
||||
@@ -131,12 +135,13 @@ FUZZ_TARGET(feefrac_div_fallback)
|
||||
}
|
||||
|
||||
// Verify the behavior of FeeFrac::DivFallback.
|
||||
auto res = FeeFrac::DivFallback(num, den);
|
||||
assert((res < 0) == is_negative);
|
||||
auto res = FeeFrac::DivFallback(num, den, round_down);
|
||||
assert(res == 0 || (res < 0) == is_negative);
|
||||
assert(Abs256(res) == quot_abs);
|
||||
|
||||
// Compare approximately with floating-point.
|
||||
long double expect = std::floor(num_high * 4294967296.0L + num_low) / den;
|
||||
long double expect = round_down ? std::floor(num_high * 4294967296.0L + num_low) / den
|
||||
: std::ceil(num_high * 4294967296.0L + num_low) / den;
|
||||
// Expect to be accurate within 50 bits of precision, +- 1 sat.
|
||||
if (expect == 0.0L) {
|
||||
assert(res >= -1 && res <= 1);
|
||||
@@ -156,40 +161,45 @@ FUZZ_TARGET(feefrac_mul_div)
|
||||
// - The combination of FeeFrac::MulFallback + FeeFrac::DivFallback.
|
||||
// - FeeFrac::Evaluate.
|
||||
|
||||
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, and a positive 31-bit
|
||||
// divisor.
|
||||
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, a positive 31-bit
|
||||
// divisor, and a rounding mode.
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
auto mul32 = provider.ConsumeIntegral<int32_t>();
|
||||
auto mul64 = provider.ConsumeIntegral<int64_t>();
|
||||
auto div = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
|
||||
auto round_down = provider.ConsumeBool();
|
||||
|
||||
// Predict the sign of the overall result.
|
||||
bool is_negative = ((mul32 < 0) && (mul64 > 0)) || ((mul32 > 0) && (mul64 < 0));
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
|
||||
// value of the quotient is the rounded-up quotient of the absolute values.
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative and we are
|
||||
// rounding down or positive and we rounding up, the absolute value of the quotient is the
|
||||
// rounded-up quotient of the absolute values.
|
||||
auto prod_abs = Abs256(mul32) * Abs256(mul64);
|
||||
auto div_abs = Abs256(div);
|
||||
auto quot_abs = is_negative ? (prod_abs + div_abs - 1) / div_abs : prod_abs / div_abs;
|
||||
auto quot_abs = (is_negative == round_down) ?
|
||||
(prod_abs + div_abs - 1) / div_abs :
|
||||
prod_abs / div_abs;
|
||||
|
||||
// If the result is not representable by an int64_t, bail out.
|
||||
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
|
||||
// If 0 <= mul32 <= div, then the result is guaranteed to be representable. In the context
|
||||
// of the Evaluate call below, this corresponds to 0 <= at_size <= feefrac.size.
|
||||
// of the Evaluate{Down,Up} calls below, this corresponds to 0 <= at_size <= feefrac.size.
|
||||
assert(mul32 < 0 || mul32 > div);
|
||||
return;
|
||||
}
|
||||
|
||||
// Verify the behavior of FeeFrac::Mul + FeeFrac::Div.
|
||||
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div);
|
||||
assert((res < 0) == is_negative);
|
||||
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div, round_down);
|
||||
assert(res == 0 || (res < 0) == is_negative);
|
||||
assert(Abs256(res) == quot_abs);
|
||||
|
||||
// Verify the behavior of FeeFrac::MulFallback + FeeFrac::DivFallback.
|
||||
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div);
|
||||
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div, round_down);
|
||||
assert(res == res_fallback);
|
||||
|
||||
// Compare approximately with floating-point.
|
||||
long double expect = std::floor(static_cast<long double>(mul32) * mul64 / div);
|
||||
long double expect = round_down ? std::floor(static_cast<long double>(mul32) * mul64 / div)
|
||||
: std::ceil(static_cast<long double>(mul32) * mul64 / div);
|
||||
// Expect to be accurate within 50 bits of precision, +- 1 sat.
|
||||
if (expect == 0.0L) {
|
||||
assert(res >= -1 && res <= 1);
|
||||
@@ -201,9 +211,11 @@ FUZZ_TARGET(feefrac_mul_div)
|
||||
assert(res <= expect * 0.999999999999999L + 1.0L);
|
||||
}
|
||||
|
||||
// Verify the behavior of FeeFrac::Evaluate.
|
||||
// Verify the behavior of FeeFrac::Evaluate{Down,Up}.
|
||||
if (mul32 >= 0) {
|
||||
auto res_fee = FeeFrac{mul64, div}.EvaluateFee(mul32);
|
||||
auto res_fee = round_down ?
|
||||
FeeFrac{mul64, div}.EvaluateFeeDown(mul32) :
|
||||
FeeFrac{mul64, div}.EvaluateFeeUp(mul32);
|
||||
assert(res == res_fee);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user