mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-12-11 05:03:16 +01:00
Merge #13191: Specialized double-SHA256 with 64 byte inputs with SSE4.1 and AVX2
4defdfab94[MOVEONLY] Move unused Merkle branch code to tests (Pieter Wuille)4437d6e1f38-way AVX2 implementation for double SHA256 on 64-byte inputs (Pieter Wuille)230294bf5f4-way SSE4.1 implementation for double SHA256 on 64-byte inputs (Pieter Wuille)1f0e7ca09cUse SHA256D64 in Merkle root computation (Pieter Wuille)d0c9632883Specialized double sha256 for 64 byte inputs (Pieter Wuille)57f34630fbRefactor SHA256 code (Pieter Wuille)0df017889bBenchmark Merkle root computation (Pieter Wuille) Pull request description: This introduces a framework for specialized double-SHA256 with 64 byte inputs. 4 different implementations are provided: * Generic C++ (reusing the normal SHA256 code) * Specialized C++ for 64-byte inputs, but no special instructions * 4-way using SSE4.1 intrinsics * 8-way using AVX2 intrinsics On my own system (AVX2 capable), I get these benchmarks for computing the Merkle root of 9001 leaves (supported lengths / special instructions / parallellism): * 7.2 ms with varsize/naive/1way (master, non-SSE4 hardware) * 5.8 ms with size64/naive/1way (this PR, non-SSE4 capable systems) * 4.8 ms with varsize/SSE4/1way (master, SSE4 hardware) * 2.9 ms with size64/SSE4/4way (this PR, SSE4 hardware) * 1.1 ms with size64/AVX2/8way (this PR, AVX2 hardware) Tree-SHA512: efa32d48b32820d9ce788ead4eb583949265be8c2e5f538c94bc914e92d131a57f8c1ee26c6f998e81fb0e30675d4e2eddc3360bcf632676249036018cff343e
This commit is contained in:
@@ -546,4 +546,20 @@ BOOST_AUTO_TEST_CASE(countbits_tests)
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(sha256d64)
|
||||
{
|
||||
for (int i = 0; i <= 32; ++i) {
|
||||
unsigned char in[64 * 32];
|
||||
unsigned char out1[32 * 32], out2[32 * 32];
|
||||
for (int j = 0; j < 64 * i; ++j) {
|
||||
in[j] = InsecureRandBits(8);
|
||||
}
|
||||
for (int j = 0; j < i; ++j) {
|
||||
CHash256().Write(in + 64 * j, 64).Finalize(out1 + 32 * j);
|
||||
}
|
||||
SHA256D64(out2, in, i);
|
||||
BOOST_CHECK(memcmp(out1, out2, 32 * i) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
@@ -9,6 +9,123 @@
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
|
||||
|
||||
static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
|
||||
uint256 hash = leaf;
|
||||
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
|
||||
if (nIndex & 1) {
|
||||
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
|
||||
} else {
|
||||
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
|
||||
}
|
||||
nIndex >>= 1;
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
||||
if (pbranch) pbranch->clear();
|
||||
if (leaves.size() == 0) {
|
||||
if (pmutated) *pmutated = false;
|
||||
if (proot) *proot = uint256();
|
||||
return;
|
||||
}
|
||||
bool mutated = false;
|
||||
// count is the number of leaves processed so far.
|
||||
uint32_t count = 0;
|
||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||
// level (0 being the leaves).
|
||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||
// the last leaf. The other inner entries are undefined.
|
||||
uint256 inner[32];
|
||||
// Which position in inner is a hash that depends on the matching leaf.
|
||||
int matchlevel = -1;
|
||||
// First process all leaves into 'inner' values.
|
||||
while (count < leaves.size()) {
|
||||
uint256 h = leaves[count];
|
||||
bool matchh = count == branchpos;
|
||||
count++;
|
||||
int level;
|
||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||
// corresponds to an inner value that existed before processing the
|
||||
// current leaf, and each needs a hash to combine it.
|
||||
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
mutated |= (inner[level] == h);
|
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
}
|
||||
// Store the resulting hash at inner position level.
|
||||
inner[level] = h;
|
||||
if (matchh) {
|
||||
matchlevel = level;
|
||||
}
|
||||
}
|
||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||
// odd levels, and reduce everything to a single top value.
|
||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||
int level = 0;
|
||||
// As long as bit number level in count is zero, skip it. It means there
|
||||
// is nothing left at this level.
|
||||
while (!(count & (((uint32_t)1) << level))) {
|
||||
level++;
|
||||
}
|
||||
uint256 h = inner[level];
|
||||
bool matchh = matchlevel == level;
|
||||
while (count != (((uint32_t)1) << level)) {
|
||||
// If we reach this point, h is an inner value that is not the top.
|
||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||
// the tree) to produce a higher level one.
|
||||
if (pbranch && matchh) {
|
||||
pbranch->push_back(h);
|
||||
}
|
||||
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
// Increment count to the value it would have if two entries at this
|
||||
// level had existed.
|
||||
count += (((uint32_t)1) << level);
|
||||
level++;
|
||||
// And propagate the result upwards accordingly.
|
||||
while (!(count & (((uint32_t)1) << level))) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
level++;
|
||||
}
|
||||
}
|
||||
// Return result.
|
||||
if (pmutated) *pmutated = mutated;
|
||||
if (proot) *proot = h;
|
||||
}
|
||||
|
||||
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
||||
std::vector<uint256> ret;
|
||||
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
||||
{
|
||||
std::vector<uint256> leaves;
|
||||
leaves.resize(block.vtx.size());
|
||||
for (size_t s = 0; s < block.vtx.size(); s++) {
|
||||
leaves[s] = block.vtx[s]->GetHash();
|
||||
}
|
||||
return ComputeMerkleBranch(leaves, position);
|
||||
}
|
||||
|
||||
// Older version of the merkle root computation code, for comparison.
|
||||
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user