Merge bitcoin/bitcoin#30526: doc: Correct uint256 hex string endianness

73e3fa10b4dd63b7767d6b6f270df66971067341 doc + test: Correct uint256 hex string endianness (Hodlinator)

Pull request description:

  This PR is a follow-up to #30436.

  Only changes test-code and modifies/adds comments.

  Byte order of hex string representation was wrongfully documented as little-endian, but are in fact closer to "big-endian" (endianness is a memory-order concept rather than a numeric concept). `[arith_]uint256` both store their data in arrays with little-endian byte order (`arith_uint256` has host byte order within each `uint32_t` element).

  **uint256_tests.cpp** - Avoid using variable from the left side of the condition in the right side. Credits to @maflcko: https://github.com/bitcoin/bitcoin/pull/30436#discussion_r1688273553

  **setup_common.cpp** - Skip needless ArithToUint256-conversion. Credits to @stickies-v: https://github.com/bitcoin/bitcoin/pull/30436#discussion_r1688621638

  ---

  <details>
  <summary>

  ## Logical reasoning for endianness

  </summary>

  1. Comparing an `arith_uint256` (`base_uint<256>`) to a `uint64_t` compares the beginning of the array, and verifies the remaining elements are zero.
  ```C++
  template <unsigned int BITS>
  bool base_uint<BITS>::EqualTo(uint64_t b) const
  {
      for (int i = WIDTH - 1; i >= 2; i--) {
          if (pn[i])
              return false;
      }
      if (pn[1] != (b >> 32))
          return false;
      if (pn[0] != (b & 0xfffffffful))
          return false;
      return true;
  }
  ```
  ...that is consistent with little endian ordering of the array.

  2. They have the same endianness (but `arith_*` has host-ordering of each `uint32_t` element):
  ```C++
  arith_uint256 UintToArith256(const uint256 &a)
  {
      arith_uint256 b;
      for(int x=0; x<b.WIDTH; ++x)
          b.pn[x] = ReadLE32(a.begin() + x*4);
      return b;
  }
  ```

  ### String conversions

  The reversal of order which happens when converting hex-strings <=> uint256 means strings are actually closer to big-endian, see the end of `base_blob<BITS>::SetHexDeprecated`:
  ```C++
      unsigned char* p1 = m_data.data();
      unsigned char* pend = p1 + WIDTH;
      while (digits > 0 && p1 < pend) {
          *p1 = ::HexDigit(trimmed[--digits]);
          if (digits > 0) {
              *p1 |= ((unsigned char)::HexDigit(trimmed[--digits]) << 4);
              p1++;
          }
      }
  ```
  Same reversal here:
  ```C++
  template <unsigned int BITS>
  std::string base_blob<BITS>::GetHex() const
  {
      uint8_t m_data_rev[WIDTH];
      for (int i = 0; i < WIDTH; ++i) {
          m_data_rev[i] = m_data[WIDTH - 1 - i];
      }
      return HexStr(m_data_rev);
  }
  ```
  It now makes sense to me that `SetHexDeprecated`, upon receiving a shorter hex string that requires zero-padding, would pad as if the missing hex chars where towards the end of the little-endian byte array, as they are the most significant bytes. "Big-endian" string representation is also consistent with the case where `SetHexDeprecated` receives too many hex digits and discards the leftmost ones, as a form of integer narrowing takes place.

  ### How I got it wrong in #30436

  Previously I used the less than (`<`) comparison to prove endianness, but for `uint256` it uses `memcmp` and thereby gives priority to the *lower* bytes at the beginning of the array.
  ```C++
      constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
  ```

  `arith_uint256` is different in that it begins by comparing the bytes from the end, as it is using little endian representation, where the bytes toward the end are more significant.
  ```C++
  template <unsigned int BITS>
  int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
  {
      for (int i = WIDTH - 1; i >= 0; i--) {
          if (pn[i] < b.pn[i])
              return -1;
          if (pn[i] > b.pn[i])
              return 1;
      }
      return 0;
  }
  ```
  (The commit documents that `base_blob::Compare()` is doing lexicographic ordering unlike the `arith_*`-variant which is doing numeric ordering).

  </details>

ACKs for top commit:
  paplorinc:
    ACK 73e3fa10b4dd63b7767d6b6f270df66971067341
  ryanofsky:
    Code review ACK 73e3fa10b4dd63b7767d6b6f270df66971067341

Tree-SHA512: 121630c37ab01aa7f7097f10322ab37da3cbc0696a6bbdbf2bbd6db180dc5938c7ed91003aaa2df7cf4a4106f973f5118ba541b5e077cf3588aa641bbd528f4e
This commit is contained in:
Ryan Ofsky 2024-08-04 21:20:39 -04:00
commit 1a7d20509f
No known key found for this signature in database
GPG Key ID: 46800E30FC748A66
5 changed files with 70 additions and 23 deletions

View File

@ -196,6 +196,7 @@ public:
return ret;
}
/** Numeric ordering (unlike \ref base_blob::Compare) */
int CompareTo(const base_uint& b) const;
bool EqualTo(uint64_t b) const;
@ -218,6 +219,7 @@ public:
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
/** Hex encoding of the number (with the most significant digits first). */
std::string GetHex() const;
std::string ToString() const;

View File

@ -3,6 +3,7 @@
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <arith_uint256.h>
#include <test/util/setup_common.h>
#include <uint256.h>
#include <boost/test/unit_test.hpp>
@ -22,7 +23,8 @@ static inline arith_uint256 arith_uint256V(const std::vector<unsigned char>& vch
{
return UintToArith256(uint256(vch));
}
static inline arith_uint256 arith_uint256S(const std::string& str) { return UintToArith256(uint256S(str)); }
// Takes a number written in hex (with most significant digits first).
static inline arith_uint256 arith_uint256S(std::string_view str) { return UintToArith256(uint256S(str)); }
const unsigned char R1Array[] =
"\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2"
@ -104,6 +106,7 @@ BOOST_AUTO_TEST_CASE( basics ) // constructors, equality, inequality
BOOST_CHECK(arith_uint256S(R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256S(" 0x" + R1L.ToString() + " ") == R1L);
BOOST_CHECK(arith_uint256S("") == ZeroL);
BOOST_CHECK(arith_uint256S("1") == OneL);
BOOST_CHECK(R1L == arith_uint256S(R1ArrayHex));
BOOST_CHECK(arith_uint256(R1L) == R1L);
BOOST_CHECK((arith_uint256(R1L^R2L)^R2L) == R1L);
@ -278,6 +281,12 @@ BOOST_AUTO_TEST_CASE( comparison ) // <= >= < >
BOOST_CHECK( R1L <= TmpL ); BOOST_CHECK( (R1L == TmpL) != (R1L < TmpL)); BOOST_CHECK( (TmpL == R1L) || !( R1L >= TmpL));
BOOST_CHECK(! (TmpL < R1L)); BOOST_CHECK(! (R1L > TmpL));
}
BOOST_CHECK_LT(ZeroL,
OneL);
// Verify hex number representation has the most significant digits first.
BOOST_CHECK_LT(arith_uint256S("0000000000000000000000000000000000000000000000000000000000000001"),
arith_uint256S("1000000000000000000000000000000000000000000000000000000000000000"));
}
BOOST_AUTO_TEST_CASE( plusMinus )

View File

@ -61,7 +61,7 @@ static std::string ArrayToString(const unsigned char A[], unsigned int width)
return Stream.str();
}
// Input is treated as little-endian.
// Takes hex string in reverse byte order.
inline uint160 uint160S(std::string_view str)
{
uint160 rv;
@ -102,6 +102,7 @@ BOOST_AUTO_TEST_CASE( basics ) // constructors, equality, inequality
BOOST_CHECK_EQUAL(uint256S(" 0x"+R1L.ToString()+"-trash;%^& "), R1L);
BOOST_CHECK_EQUAL(uint256S("\t \n \n \f\n\r\t\v\t 0x"+R1L.ToString()+" \t \n \n \f\n\r\t\v\t "), R1L);
BOOST_CHECK_EQUAL(uint256S(""), ZeroL);
BOOST_CHECK_EQUAL(uint256S("1"), OneL);
BOOST_CHECK_EQUAL(R1L, uint256S(R1ArrayHex));
BOOST_CHECK_EQUAL(uint256(R1L), R1L);
BOOST_CHECK_EQUAL(uint256(ZeroL), ZeroL);
@ -155,9 +156,15 @@ BOOST_AUTO_TEST_CASE( comparison ) // <= >= < >
BOOST_CHECK_LT(R1S, MaxS);
BOOST_CHECK_LT(R2S, MaxS);
// Verify hex strings are little-endian
BOOST_CHECK_LT(uint256S("2000000000000000000000000000000000000000000000000000000000000001"),
uint256S("1000000000000000000000000000000000000000000000000000000000000002"));
// Non-arithmetic uint256s compare from the beginning of their inner arrays:
BOOST_CHECK_LT(R2L, R1L);
// Ensure first element comparisons give the same order as above:
BOOST_CHECK_LT(*R2L.begin(), *R1L.begin());
// Ensure last element comparisons give a different result (swapped params):
BOOST_CHECK_LT(*(R1L.end()-1), *(R2L.end()-1));
// Hex strings represent reverse-encoded bytes, with lexicographic ordering:
BOOST_CHECK_LT(uint256S("1000000000000000000000000000000000000000000000000000000000000000"),
uint256S("0000000000000000000000000000000000000000000000000000000000000001"));
}
BOOST_AUTO_TEST_CASE(methods) // GetHex SetHexDeprecated FromHex begin() end() size() GetLow64 GetSerializeSize, Serialize, Unserialize
@ -175,11 +182,11 @@ BOOST_AUTO_TEST_CASE(methods) // GetHex SetHexDeprecated FromHex begin() end() s
BOOST_CHECK_EQUAL(uint256::FromHex(ZeroL.ToString()).value(), uint256());
TmpL = uint256::FromHex(R1L.ToString()).value();
BOOST_CHECK_EQUAL_COLLECTIONS(R1L.begin(), R1L.end(), R1Array, R1Array + R1L.size());
BOOST_CHECK_EQUAL_COLLECTIONS(TmpL.begin(), TmpL.end(), R1Array, R1Array + TmpL.size());
BOOST_CHECK_EQUAL_COLLECTIONS(R2L.begin(), R2L.end(), R2Array, R2Array + R2L.size());
BOOST_CHECK_EQUAL_COLLECTIONS(ZeroL.begin(), ZeroL.end(), ZeroArray, ZeroArray + ZeroL.size());
BOOST_CHECK_EQUAL_COLLECTIONS(OneL.begin(), OneL.end(), OneArray, OneArray + OneL.size());
BOOST_CHECK_EQUAL_COLLECTIONS(R1L.begin(), R1L.end(), R1Array, R1Array + uint256::size());
BOOST_CHECK_EQUAL_COLLECTIONS(TmpL.begin(), TmpL.end(), R1Array, R1Array + uint256::size());
BOOST_CHECK_EQUAL_COLLECTIONS(R2L.begin(), R2L.end(), R2Array, R2Array + uint256::size());
BOOST_CHECK_EQUAL_COLLECTIONS(ZeroL.begin(), ZeroL.end(), ZeroArray, ZeroArray + uint256::size());
BOOST_CHECK_EQUAL_COLLECTIONS(OneL.begin(), OneL.end(), OneArray, OneArray + uint256::size());
BOOST_CHECK_EQUAL(R1L.size(), sizeof(R1L));
BOOST_CHECK_EQUAL(sizeof(R1L), 32);
BOOST_CHECK_EQUAL(R1L.size(), 32);
@ -221,11 +228,11 @@ BOOST_AUTO_TEST_CASE(methods) // GetHex SetHexDeprecated FromHex begin() end() s
BOOST_CHECK_EQUAL(uint160::FromHex(ZeroS.ToString()).value(), uint160());
TmpS = uint160::FromHex(R1S.ToString()).value();
BOOST_CHECK_EQUAL_COLLECTIONS(R1S.begin(), R1S.end(), R1Array, R1Array + R1S.size());
BOOST_CHECK_EQUAL_COLLECTIONS(TmpS.begin(), TmpS.end(), R1Array, R1Array + TmpS.size());
BOOST_CHECK_EQUAL_COLLECTIONS(R2S.begin(), R2S.end(), R2Array, R2Array + R2S.size());
BOOST_CHECK_EQUAL_COLLECTIONS(ZeroS.begin(), ZeroS.end(), ZeroArray, ZeroArray + ZeroS.size());
BOOST_CHECK_EQUAL_COLLECTIONS(OneS.begin(), OneS.end(), OneArray, OneArray + OneS.size());
BOOST_CHECK_EQUAL_COLLECTIONS(R1S.begin(), R1S.end(), R1Array, R1Array + uint160::size());
BOOST_CHECK_EQUAL_COLLECTIONS(TmpS.begin(), TmpS.end(), R1Array, R1Array + uint160::size());
BOOST_CHECK_EQUAL_COLLECTIONS(R2S.begin(), R2S.end(), R2Array, R2Array + uint160::size());
BOOST_CHECK_EQUAL_COLLECTIONS(ZeroS.begin(), ZeroS.end(), ZeroArray, ZeroArray + uint160::size());
BOOST_CHECK_EQUAL_COLLECTIONS(OneS.begin(), OneS.end(), OneArray, OneArray + uint160::size());
BOOST_CHECK_EQUAL(R1S.size(), sizeof(R1S));
BOOST_CHECK_EQUAL(sizeof(R1S), 20);
BOOST_CHECK_EQUAL(R1S.size(), 20);
@ -310,7 +317,7 @@ BOOST_AUTO_TEST_CASE(parse)
{
std::string s_12{"0000000000000000000000000000000000000000000000000000000000000012"};
BOOST_CHECK_EQUAL(uint256S("12\0").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(std::string{"12\0", 3}).GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(std::string_view{"12\0", 3}).GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S("0x12").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(" 0x12").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(" 12").GetHex(), s_12);
@ -318,7 +325,7 @@ BOOST_AUTO_TEST_CASE(parse)
{
std::string s_1{uint256::ONE.GetHex()};
BOOST_CHECK_EQUAL(uint256S("1\0").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(std::string{"1\0", 2}).GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(std::string_view{"1\0", 2}).GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S("0x1").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(" 0x1").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(" 1").GetHex(), s_1);
@ -326,7 +333,7 @@ BOOST_AUTO_TEST_CASE(parse)
{
std::string s_0{uint256::ZERO.GetHex()};
BOOST_CHECK_EQUAL(uint256S("\0").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(std::string{"\0", 1}).GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(std::string_view{"\0", 1}).GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S("0x").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(" 0x").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(" ").GetHex(), s_0);

View File

@ -81,7 +81,7 @@ static FastRandomContext g_insecure_rand_ctx_temp_path;
std::ostream& operator<<(std::ostream& os, const arith_uint256& num)
{
os << ArithToUint256(num).ToString();
os << num.ToString();
return os;
}

View File

@ -53,17 +53,46 @@ public:
std::fill(m_data.begin(), m_data.end(), 0);
}
/** Lexicographic ordering
* @note Does NOT match the ordering on the corresponding \ref
* base_uint::CompareTo, which starts comparing from the end.
*/
constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
friend constexpr bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
friend constexpr bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
friend constexpr bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }
// Hex string representations are little-endian.
/** @name Hex representation
*
* The reverse-byte hex representation is a convenient way to view the blob
* as a number, because it is consistent with the way the base_uint class
* converts blobs to numbers.
*
* @note base_uint treats the blob as an array of bytes with the numerically
* least significant byte first and the most significant byte last. Because
* numbers are typically written with the most significant digit first and
* the least significant digit last, the reverse hex display of the blob
* corresponds to the same numeric value that base_uint interprets from the
* blob.
* @{*/
std::string GetHex() const;
/** Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated */
/** Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated!
*
* - Hex numbers that don't specify enough bytes to fill the internal array
* will be treated as setting the beginning of it, which corresponds to
* the least significant bytes when converted to base_uint.
*
* - Hex numbers specifying too many bytes will have the numerically most
* significant bytes (the beginning of the string) narrowed away.
*
* - An odd count of hex digits will result in the high bits of the leftmost
* byte being zero.
* "0x123" => {0x23, 0x1, 0x0, ..., 0x0}
*/
void SetHexDeprecated(std::string_view str);
std::string ToString() const;
/**@}*/
constexpr const unsigned char* data() const { return m_data.data(); }
constexpr unsigned char* data() { return m_data.data(); }
@ -93,7 +122,7 @@ public:
namespace detail {
/**
* Writes the hex string (treated as little-endian) into a new uintN_t object
* Writes the hex string (in reverse byte order) into a new uintN_t object
* and only returns a value iff all of the checks pass:
* - Input length is uintN_t::size()*2
* - All characters are hex
@ -134,7 +163,7 @@ public:
static const uint256 ONE;
};
/* uint256 from std::string_view, treated as little-endian.
/* uint256 from std::string_view, containing byte-reversed hex encoding.
* DEPRECATED. Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated!
*/
inline uint256 uint256S(std::string_view str)