Adapt to libsecp256k1 API changes

* Use SECP256K1_CONTEXT_NONE when creating signing context, as
  SECP256K1_CONTEXT_SIGN is deprecated and unnecessary.
* Use secp256k1_static_context where applicable.
This commit is contained in:
Pieter Wuille
2022-12-12 23:44:53 -05:00
parent 3d8a6ae283
commit 4462cb0498
29 changed files with 44 additions and 166 deletions

View File

@@ -16,12 +16,6 @@
#include <algorithm>
#include <cassert>
namespace
{
/* Global secp256k1_context object used for verification. */
secp256k1_context* secp256k1_context_verify = nullptr;
} // namespace
/** This function is taken from the libsecp256k1 distribution and implements
* DER parsing for ECDSA signatures, while supporting an arbitrary subset of
* format violations.
@@ -32,7 +26,7 @@ secp256k1_context* secp256k1_context_verify = nullptr;
* strict DER before being passed to this module, and we know it supports all
* violations present in the blockchain before that point.
*/
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
int ecdsa_signature_parse_der_lax(secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
size_t rpos, rlen, spos, slen;
size_t pos = 0;
size_t lenbyte;
@@ -40,7 +34,7 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_
int overflow = 0;
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
/* Sequence tag byte */
if (pos == inputlen || input[pos] != 0x30) {
@@ -163,13 +157,13 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_
}
if (!overflow) {
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
overflow = !secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
}
if (overflow) {
/* Overwrite the result again with a correctly-parsed but invalid
signature if parsing failed. */
memset(tmpsig, 0, 64);
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
}
return 1;
}
@@ -200,15 +194,15 @@ std::vector<CKeyID> XOnlyPubKey::GetKeyIDs() const
bool XOnlyPubKey::IsFullyValid() const
{
secp256k1_xonly_pubkey pubkey;
return secp256k1_xonly_pubkey_parse(secp256k1_context_verify, &pubkey, m_keydata.data());
return secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data());
}
bool XOnlyPubKey::VerifySchnorr(const uint256& msg, Span<const unsigned char> sigbytes) const
{
assert(sigbytes.size() == 64);
secp256k1_xonly_pubkey pubkey;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_verify, &pubkey, m_keydata.data())) return false;
return secp256k1_schnorrsig_verify(secp256k1_context_verify, sigbytes.data(), msg.begin(), 32, &pubkey);
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data())) return false;
return secp256k1_schnorrsig_verify(secp256k1_context_static, sigbytes.data(), msg.begin(), 32, &pubkey);
}
static const HashWriter HASHER_TAPTWEAK{TaggedHash("TapTweak")};
@@ -227,23 +221,23 @@ uint256 XOnlyPubKey::ComputeTapTweakHash(const uint256* merkle_root) const
bool XOnlyPubKey::CheckTapTweak(const XOnlyPubKey& internal, const uint256& merkle_root, bool parity) const
{
secp256k1_xonly_pubkey internal_key;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_verify, &internal_key, internal.data())) return false;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &internal_key, internal.data())) return false;
uint256 tweak = internal.ComputeTapTweakHash(&merkle_root);
return secp256k1_xonly_pubkey_tweak_add_check(secp256k1_context_verify, m_keydata.begin(), parity, &internal_key, tweak.begin());
return secp256k1_xonly_pubkey_tweak_add_check(secp256k1_context_static, m_keydata.begin(), parity, &internal_key, tweak.begin());
}
std::optional<std::pair<XOnlyPubKey, bool>> XOnlyPubKey::CreateTapTweak(const uint256* merkle_root) const
{
secp256k1_xonly_pubkey base_point;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_verify, &base_point, data())) return std::nullopt;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &base_point, data())) return std::nullopt;
secp256k1_pubkey out;
uint256 tweak = ComputeTapTweakHash(merkle_root);
if (!secp256k1_xonly_pubkey_tweak_add(secp256k1_context_verify, &out, &base_point, tweak.data())) return std::nullopt;
if (!secp256k1_xonly_pubkey_tweak_add(secp256k1_context_static, &out, &base_point, tweak.data())) return std::nullopt;
int parity = -1;
std::pair<XOnlyPubKey, bool> ret;
secp256k1_xonly_pubkey out_xonly;
if (!secp256k1_xonly_pubkey_from_pubkey(secp256k1_context_verify, &out_xonly, &parity, &out)) return std::nullopt;
secp256k1_xonly_pubkey_serialize(secp256k1_context_verify, ret.first.begin(), &out_xonly);
if (!secp256k1_xonly_pubkey_from_pubkey(secp256k1_context_static, &out_xonly, &parity, &out)) return std::nullopt;
secp256k1_xonly_pubkey_serialize(secp256k1_context_static, ret.first.begin(), &out_xonly);
assert(parity == 0 || parity == 1);
ret.second = parity;
return ret;
@@ -255,17 +249,16 @@ bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchS
return false;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, vch, size())) {
if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
return false;
}
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, vchSig.data(), vchSig.size())) {
if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) {
return false;
}
/* libsecp256k1's ECDSA verification requires lower-S signatures, which have
* not historically been enforced in Bitcoin, so normalize them first. */
secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, &sig, &sig);
return secp256k1_ecdsa_verify(secp256k1_context_verify, &sig, hash.begin(), &pubkey);
secp256k1_ecdsa_signature_normalize(secp256k1_context_static, &sig, &sig);
return secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pubkey);
}
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
@@ -275,16 +268,15 @@ bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned cha
bool fComp = ((vchSig[0] - 27) & 4) != 0;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_recoverable_signature sig;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_verify, &sig, &vchSig[1], recid)) {
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_static, &sig, &vchSig[1], recid)) {
return false;
}
if (!secp256k1_ecdsa_recover(secp256k1_context_verify, &pubkey, &sig, hash.begin())) {
if (!secp256k1_ecdsa_recover(secp256k1_context_static, &pubkey, &sig, hash.begin())) {
return false;
}
unsigned char pub[SIZE];
size_t publen = SIZE;
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
Set(pub, pub + publen);
return true;
}
@@ -293,21 +285,19 @@ bool CPubKey::IsFullyValid() const {
if (!IsValid())
return false;
secp256k1_pubkey pubkey;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
return secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, vch, size());
return secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size());
}
bool CPubKey::Decompress() {
if (!IsValid())
return false;
secp256k1_pubkey pubkey;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, vch, size())) {
if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
return false;
}
unsigned char pub[SIZE];
size_t publen = SIZE;
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
Set(pub, pub + publen);
return true;
}
@@ -320,16 +310,15 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChi
BIP32Hash(cc, nChild, *begin(), begin()+1, out);
memcpy(ccChild.begin(), out+32, 32);
secp256k1_pubkey pubkey;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, vch, size())) {
if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
return false;
}
if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_verify, &pubkey, out)) {
if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_static, &pubkey, out)) {
return false;
}
unsigned char pub[COMPRESSED_SIZE];
size_t publen = COMPRESSED_SIZE;
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED);
secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED);
pubkeyChild.Set(pub, pub + publen);
return true;
}
@@ -375,35 +364,8 @@ bool CExtPubKey::Derive(CExtPubKey &out, unsigned int _nChild) const {
/* static */ bool CPubKey::CheckLowS(const std::vector<unsigned char>& vchSig) {
secp256k1_ecdsa_signature sig;
assert(secp256k1_context_verify && "secp256k1_context_verify must be initialized to use CPubKey.");
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, vchSig.data(), vchSig.size())) {
if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) {
return false;
}
return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, nullptr, &sig));
}
/* static */ int ECCVerifyHandle::refcount = 0;
ECCVerifyHandle::ECCVerifyHandle()
{
if (refcount == 0) {
assert(secp256k1_context_verify == nullptr);
secp256k1_context_verify = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
assert(secp256k1_context_verify != nullptr);
}
refcount++;
}
ECCVerifyHandle::~ECCVerifyHandle()
{
refcount--;
if (refcount == 0) {
assert(secp256k1_context_verify != nullptr);
secp256k1_context_destroy(secp256k1_context_verify);
secp256k1_context_verify = nullptr;
}
}
const secp256k1_context* GetVerifyContext() {
return secp256k1_context_verify;
return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_static, nullptr, &sig));
}