util: Introduce ToIntegral<T>(const std::string&) for locale independent parsing using std::from_chars(…) (C++17)

util: Avoid locale dependent functions strtol/strtoll/strtoul/strtoull in ParseInt32/ParseInt64/ParseUInt32/ParseUInt64

fuzz: Assert equivalence between new and old Parse{Int,Uint}{8,32,64} functions

test: Add unit tests for ToIntegral<T>(const std::string&)
This commit is contained in:
practicalswift
2021-09-18 04:30:30 +00:00
parent e69cbac628
commit 4747db8761
5 changed files with 270 additions and 74 deletions

View File

@@ -31,9 +31,99 @@
#include <version.h>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>
namespace {
bool LegacyParsePrechecks(const std::string& str)
{
if (str.empty()) // No empty string allowed
return false;
if (str.size() >= 1 && (IsSpace(str[0]) || IsSpace(str[str.size() - 1]))) // No padding allowed
return false;
if (!ValidAsCString(str)) // No embedded NUL characters allowed
return false;
return true;
}
bool LegacyParseInt32(const std::string& str, int32_t* out)
{
if (!LegacyParsePrechecks(str))
return false;
char* endp = nullptr;
errno = 0; // strtol will not set errno if valid
long int n = strtol(str.c_str(), &endp, 10);
if (out) *out = (int32_t)n;
// Note that strtol returns a *long int*, so even if strtol doesn't report an over/underflow
// we still have to check that the returned value is within the range of an *int32_t*. On 64-bit
// platforms the size of these types may be different.
return endp && *endp == 0 && !errno &&
n >= std::numeric_limits<int32_t>::min() &&
n <= std::numeric_limits<int32_t>::max();
}
bool LegacyParseInt64(const std::string& str, int64_t* out)
{
if (!LegacyParsePrechecks(str))
return false;
char* endp = nullptr;
errno = 0; // strtoll will not set errno if valid
long long int n = strtoll(str.c_str(), &endp, 10);
if (out) *out = (int64_t)n;
// Note that strtoll returns a *long long int*, so even if strtol doesn't report an over/underflow
// we still have to check that the returned value is within the range of an *int64_t*.
return endp && *endp == 0 && !errno &&
n >= std::numeric_limits<int64_t>::min() &&
n <= std::numeric_limits<int64_t>::max();
}
bool LegacyParseUInt32(const std::string& str, uint32_t* out)
{
if (!LegacyParsePrechecks(str))
return false;
if (str.size() >= 1 && str[0] == '-') // Reject negative values, unfortunately strtoul accepts these by default if they fit in the range
return false;
char* endp = nullptr;
errno = 0; // strtoul will not set errno if valid
unsigned long int n = strtoul(str.c_str(), &endp, 10);
if (out) *out = (uint32_t)n;
// Note that strtoul returns a *unsigned long int*, so even if it doesn't report an over/underflow
// we still have to check that the returned value is within the range of an *uint32_t*. On 64-bit
// platforms the size of these types may be different.
return endp && *endp == 0 && !errno &&
n <= std::numeric_limits<uint32_t>::max();
}
bool LegacyParseUInt8(const std::string& str, uint8_t* out)
{
uint32_t u32;
if (!LegacyParseUInt32(str, &u32) || u32 > std::numeric_limits<uint8_t>::max()) {
return false;
}
if (out != nullptr) {
*out = static_cast<uint8_t>(u32);
}
return true;
}
bool LegacyParseUInt64(const std::string& str, uint64_t* out)
{
if (!LegacyParsePrechecks(str))
return false;
if (str.size() >= 1 && str[0] == '-') // Reject negative values, unfortunately strtoull accepts these by default if they fit in the range
return false;
char* endp = nullptr;
errno = 0; // strtoull will not set errno if valid
unsigned long long int n = strtoull(str.c_str(), &endp, 10);
if (out) *out = (uint64_t)n;
// Note that strtoull returns a *unsigned long long int*, so even if it doesn't report an over/underflow
// we still have to check that the returned value is within the range of an *uint64_t*.
return endp && *endp == 0 && !errno &&
n <= std::numeric_limits<uint64_t>::max();
}
}; // namespace
FUZZ_TARGET(string)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
@@ -133,4 +223,49 @@ FUZZ_TARGET(string)
const bilingual_str bs2{random_string_2, random_string_1};
(void)(bs1 + bs2);
}
{
int32_t i32;
int64_t i64;
uint32_t u32;
uint64_t u64;
uint8_t u8;
const bool ok_i32 = ParseInt32(random_string_1, &i32);
const bool ok_i64 = ParseInt64(random_string_1, &i64);
const bool ok_u32 = ParseUInt32(random_string_1, &u32);
const bool ok_u64 = ParseUInt64(random_string_1, &u64);
const bool ok_u8 = ParseUInt8(random_string_1, &u8);
int32_t i32_legacy;
int64_t i64_legacy;
uint32_t u32_legacy;
uint64_t u64_legacy;
uint8_t u8_legacy;
const bool ok_i32_legacy = LegacyParseInt32(random_string_1, &i32_legacy);
const bool ok_i64_legacy = LegacyParseInt64(random_string_1, &i64_legacy);
const bool ok_u32_legacy = LegacyParseUInt32(random_string_1, &u32_legacy);
const bool ok_u64_legacy = LegacyParseUInt64(random_string_1, &u64_legacy);
const bool ok_u8_legacy = LegacyParseUInt8(random_string_1, &u8_legacy);
assert(ok_i32 == ok_i32_legacy);
assert(ok_i64 == ok_i64_legacy);
assert(ok_u32 == ok_u32_legacy);
assert(ok_u64 == ok_u64_legacy);
assert(ok_u8 == ok_u8_legacy);
if (ok_i32) {
assert(i32 == i32_legacy);
}
if (ok_i64) {
assert(i64 == i64_legacy);
}
if (ok_u32) {
assert(u32 == u32_legacy);
}
if (ok_u64) {
assert(u64 == u64_legacy);
}
if (ok_u8) {
assert(u8 == u8_legacy);
}
}
}