refactor: reduce template bloat in primitive serialization

Merged multiple template methods into single constexpr-delimited implementation to reduce template bloat (i.e. related functionality is grouped into a single method, but can be optimized because of C++20 constexpr conditions).
This unifies related methods that were only bound before by similar signatures - and enables `SizeComputer` optimizations later
This commit is contained in:
Lőrinc 2025-01-17 14:29:33 +01:00
parent 8d0d507e28
commit 635ec43592

View File

@ -252,38 +252,47 @@ const Out& AsBase(const In& x)
template<class T>
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;
template <typename T>
concept ByteOrIntegral = std::is_same_v<T, std::byte> ||
(std::is_integral_v<T> && !std::is_same_v<T, char>);
template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template <typename Stream, ByteOrIntegral T> void Serialize(Stream& s, T a)
{
if constexpr (sizeof(T) == 1) {
ser_writedata8(s, static_cast<uint8_t>(a)); // (u)int8_t or std::byte or bool
} else if constexpr (sizeof(T) == 2) {
ser_writedata16(s, static_cast<uint16_t>(a)); // (u)int16_t
} else if constexpr (sizeof(T) == 4) {
ser_writedata32(s, static_cast<uint32_t>(a)); // (u)int32_t
} else {
static_assert(sizeof(T) == 8);
ser_writedata64(s, static_cast<uint64_t>(a)); // (u)int64_t
}
}
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, std::span<B, N> span) { s.write(std::as_bytes(span)); }
template <typename Stream, BasicByte B> void Serialize(Stream& s, std::span<B> span) { s.write(std::as_bytes(span)); }
template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template <typename Stream, ByteOrIntegral T> void Unserialize(Stream& s, T& a)
{
if constexpr (sizeof(T) == 1) {
a = static_cast<T>(ser_readdata8(s)); // (u)int8_t or std::byte or bool
} else if constexpr (sizeof(T) == 2) {
a = static_cast<T>(ser_readdata16(s)); // (u)int16_t
} else if constexpr (sizeof(T) == 4) {
a = static_cast<T>(ser_readdata32(s)); // (u)int32_t
} else {
static_assert(sizeof(T) == 8);
a = static_cast<T>(ser_readdata64(s)); // (u)int64_t
}
}
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::span<B, N> span) { s.read(std::as_writable_bytes(span)); }
template <typename Stream, BasicByte B> void Unserialize(Stream& s, std::span<B> span) { s.read(std::as_writable_bytes(span)); }
template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
// clang-format on
@ -489,7 +498,7 @@ public:
* serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
* READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
*
* This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
* This works by constructing a Wrapper<Formatter, T&>-wrapped version of object, where T is
* const during serialization, and non-const during deserialization, which maintains const
* correctness.
*/