Switch to C89 comments in prep for making the whole codebase C89 compatible.

This should be whitespace/comment only changes and should produce the same
object code.
This commit is contained in:
Gregory Maxwell
2014-11-15 15:28:10 +00:00
parent 21288f2d05
commit 71712b27e5
38 changed files with 802 additions and 716 deletions

View File

@@ -1,6 +1,8 @@
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_
@@ -66,9 +68,10 @@ static void secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) {
static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
// The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
// { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
// 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_t x2;
secp256k1_fe_sqr(&x2, a);
@@ -114,7 +117,7 @@ static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
for (int j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
secp256k1_fe_mul(&x223, &x223, &x3);
// The final result is then assembled using a sliding window over the blocks.
/* The final result is then assembled using a sliding window over the blocks. */
secp256k1_fe_t t1 = x223;
for (int j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
@@ -124,7 +127,7 @@ static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
// Check that a square root was actually calculated
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
secp256k1_fe_negate(&t1, &t1, 1);
@@ -135,9 +138,10 @@ static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
// The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
// { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
// [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_t x2;
secp256k1_fe_sqr(&x2, a);
@@ -183,7 +187,7 @@ static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
for (int j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
secp256k1_fe_mul(&x223, &x223, &x3);
// The final result is then assembled using a sliding window over the blocks.
/* The final result is then assembled using a sliding window over the blocks. */
secp256k1_fe_t t1 = x223;
for (int j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
@@ -204,7 +208,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_t c = *a;
secp256k1_fe_normalize(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_t n;
secp256k1_num_t n;
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_mod_inverse(&n, &n, &secp256k1_fe_consts->p);
secp256k1_num_get_bin(b, 32, &n);