Replace current benchmarking framework with nanobench

This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:

* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
  an Intel i7-8700 CPU @ 3.20GHz.

* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
  calculate standard deviation / mean = coefficient of variation:

  * 0.57% CV for old benchmarking framework
  * 0.20% CV for nanobench

  So the benchmark results with nanobench seem to vary less than with
  the old framework.

* It automatically determines runtime based on clock precision, no need
  to specify number of evaluations.

* measure instructions, cycles, branches, instructions per cycle,
  branch misses (only Linux, when performance counters are available)

* output in markdown table format.

* Warn about unstable environment (frequency scaling, turbo, ...)

* For better profiling, it is possible to set the environment variable
  NANOBENCH_ENDLESS to force endless running of a particular benchmark
  without the need to recompile. This makes it to e.g. run "perf top"
  and look at hotspots.

Here is an example copy & pasted from the terminal output:

|             ns/byte |              byte/s |    err% |        ins/byte |        cyc/byte |    IPC |       bra/byte |   miss% |     total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
|                2.52 |      396,529,415.94 |    0.6% |           25.42 |            8.02 |  3.169 |           0.06 |    0.0% |      0.03 | `bench/crypto_hash.cpp RIPEMD160`
|                1.87 |      535,161,444.83 |    0.3% |           21.36 |            5.95 |  3.589 |           0.06 |    0.0% |      0.02 | `bench/crypto_hash.cpp SHA1`
|                3.22 |      310,344,174.79 |    1.1% |           36.80 |           10.22 |  3.601 |           0.09 |    0.0% |      0.04 | `bench/crypto_hash.cpp SHA256`
|                2.01 |      496,375,796.23 |    0.0% |           18.72 |            6.43 |  2.911 |           0.01 |    1.0% |      0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
|                7.23 |      138,263,519.35 |    0.1% |           82.66 |           23.11 |  3.577 |           1.63 |    0.1% |      0.00 | `bench/crypto_hash.cpp SHA256_32b`
|                3.04 |      328,780,166.40 |    0.3% |           35.82 |            9.69 |  3.696 |           0.03 |    0.0% |      0.03 | `bench/crypto_hash.cpp SHA512`

[1] https://github.com/martinus/nanobench

* Adds support for asymptotes

  This adds support to calculate asymptotic complexity of a benchmark.
  This is similar to #17375, but currently only one asymptote is
  supported, and I have added support in the benchmark `ComplexMemPool`
  as an example.

  Usage is e.g. like this:

  ```
  ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
  ```

  This runs the benchmark `ComplexMemPool` several times but with
  different complexityN settings. The benchmark can extract that number
  and use it accordingly. Here, it's used for `childTxs`. The output is
  this:

  | complexityN |               ns/op |                op/s |    err% |          ins/op |          cyc/op |    IPC |     total | benchmark
  |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
  |          25 |        1,064,241.00 |              939.64 |    1.4% |    3,960,279.00 |    2,829,708.00 |  1.400 |      0.01 | `ComplexMemPool`
  |          50 |        1,579,530.00 |              633.10 |    1.0% |    6,231,810.00 |    4,412,674.00 |  1.412 |      0.02 | `ComplexMemPool`
  |         100 |        4,022,774.00 |              248.58 |    0.6% |   16,544,406.00 |   11,889,535.00 |  1.392 |      0.04 | `ComplexMemPool`
  |         200 |       15,390,986.00 |               64.97 |    0.2% |   63,904,254.00 |   47,731,705.00 |  1.339 |      0.17 | `ComplexMemPool`
  |         400 |       69,394,711.00 |               14.41 |    0.1% |  272,602,461.00 |  219,014,691.00 |  1.245 |      0.76 | `ComplexMemPool`
  |         600 |      168,977,165.00 |                5.92 |    0.1% |  639,108,082.00 |  535,316,887.00 |  1.194 |      1.86 | `ComplexMemPool`
  |         800 |      310,109,077.00 |                3.22 |    0.1% |1,149,134,246.00 |  984,620,812.00 |  1.167 |      3.41 | `ComplexMemPool`

  |   coefficient |   err% | complexity
  |--------------:|-------:|------------
  |   4.78486e-07 |   4.5% | O(n^2)
  |   6.38557e-10 |  21.7% | O(n^3)
  |   3.42338e-05 |  38.0% | O(n log n)
  |   0.000313914 |  46.9% | O(n)
  |     0.0129823 | 114.4% | O(log n)
  |     0.0815055 | 133.8% | O(1)

  The best fitting curve is O(n^2), so the algorithm seems to scale
  quadratic with `childTxs` in the range 25 to 800.
This commit is contained in:
Martin Ankerl
2020-06-13 09:37:27 +02:00
parent 19e919217e
commit 78c312c983
38 changed files with 3656 additions and 585 deletions

View File

@@ -11,131 +11,53 @@
#include <string>
#include <vector>
#include <bench/nanobench.h>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/stringize.hpp>
// Simple micro-benchmarking framework; API mostly matches a subset of the Google Benchmark
// framework (see https://github.com/google/benchmark)
// Why not use the Google Benchmark framework? Because adding Yet Another Dependency
// (that uses cmake as its build system and has lots of features we don't need) isn't
// worth it.
/*
* Usage:
static void CODE_TO_TIME(benchmark::State& state)
static void CODE_TO_TIME(benchmark::Bench& bench)
{
... do any setup needed...
while (state.KeepRunning()) {
nanobench::Config().run([&] {
... do stuff you want to time...
}
});
... do any cleanup needed...
}
// default to running benchmark for 5000 iterations
BENCHMARK(CODE_TO_TIME, 5000);
BENCHMARK(CODE_TO_TIME);
*/
namespace benchmark {
// In case high_resolution_clock is steady, prefer that, otherwise use steady_clock.
struct best_clock {
using hi_res_clock = std::chrono::high_resolution_clock;
using steady_clock = std::chrono::steady_clock;
using type = std::conditional<hi_res_clock::is_steady, hi_res_clock, steady_clock>::type;
using ankerl::nanobench::Bench;
typedef std::function<void(Bench&)> BenchFunction;
struct Args {
std::string regex_filter;
bool is_list_only;
std::vector<double> asymptote;
std::string output_csv;
std::string output_json;
};
using clock = best_clock::type;
using time_point = clock::time_point;
using duration = clock::duration;
class Printer;
class State
{
public:
std::string m_name;
uint64_t m_num_iters_left;
const uint64_t m_num_iters;
const uint64_t m_num_evals;
std::vector<double> m_elapsed_results;
time_point m_start_time;
bool UpdateTimer(time_point finish_time);
State(std::string name, uint64_t num_evals, double num_iters, Printer& printer) : m_name(name), m_num_iters_left(0), m_num_iters(num_iters), m_num_evals(num_evals)
{
}
inline bool KeepRunning()
{
if (m_num_iters_left--) {
return true;
}
bool result = UpdateTimer(clock::now());
// measure again so runtime of UpdateTimer is not included
m_start_time = clock::now();
return result;
}
};
typedef std::function<void(State&)> BenchFunction;
class BenchRunner
{
struct Bench {
BenchFunction func;
uint64_t num_iters_for_one_second;
};
typedef std::map<std::string, Bench> BenchmarkMap;
typedef std::map<std::string, BenchFunction> BenchmarkMap;
static BenchmarkMap& benchmarks();
public:
BenchRunner(std::string name, BenchFunction func, uint64_t num_iters_for_one_second);
BenchRunner(std::string name, BenchFunction func);
static void RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only);
};
// interface to output benchmark results.
class Printer
{
public:
virtual ~Printer() {}
virtual void header() = 0;
virtual void result(const State& state) = 0;
virtual void footer() = 0;
};
// default printer to console, shows min, max, median.
class ConsolePrinter : public Printer
{
public:
void header() override;
void result(const State& state) override;
void footer() override;
};
// creates box plot with plotly.js
class PlotlyPrinter : public Printer
{
public:
PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height);
void header() override;
void result(const State& state) override;
void footer() override;
private:
std::string m_plotly_url;
int64_t m_width;
int64_t m_height;
static void RunAll(const Args& args);
};
}
// BENCHMARK(foo, num_iters_for_one_second) expands to: benchmark::BenchRunner bench_11foo("foo", num_iterations);
// Choose a num_iters_for_one_second that takes roughly 1 second. The goal is that all benchmarks should take approximately
// the same time, and scaling factor can be used that the total time is appropriate for your system.
#define BENCHMARK(n, num_iters_for_one_second) \
benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n, (num_iters_for_one_second));
// BENCHMARK(foo) expands to: benchmark::BenchRunner bench_11foo("foo");
#define BENCHMARK(n) \
benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n);
#endif // BITCOIN_BENCH_BENCH_H