mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-19 23:03:45 +01:00
feefrac: add helper functions for 96-bit division
These functions are needed to implement FeeFrac evaluation later: given a
FeeFrac{fee, size}, its fee at at_size is (fee * at_size / size).
This commit is contained in:
@@ -9,6 +9,7 @@
|
||||
#include <test/fuzz/util.h>
|
||||
|
||||
#include <compare>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
|
||||
@@ -32,6 +33,18 @@ arith_uint256 Abs256(int64_t x)
|
||||
}
|
||||
}
|
||||
|
||||
/** Construct an arith_uint256 whose value equals abs(x), for 96-bit x. */
|
||||
arith_uint256 Abs256(std::pair<int64_t, uint32_t> x)
|
||||
{
|
||||
if (x.first >= 0) {
|
||||
// x.first and x.second are both non-negative; sum their absolute values.
|
||||
return (Abs256(x.first) << 32) + Abs256(x.second);
|
||||
} else {
|
||||
// x.first is negative and x.second is non-negative; subtract the absolute values.
|
||||
return (Abs256(x.first) << 32) - Abs256(x.second);
|
||||
}
|
||||
}
|
||||
|
||||
std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2)
|
||||
{
|
||||
// Compute and compare signs.
|
||||
@@ -92,3 +105,98 @@ FUZZ_TARGET(feefrac)
|
||||
assert((fr1 == fr2) == std::is_eq(cmp_total));
|
||||
assert((fr1 != fr2) == std::is_neq(cmp_total));
|
||||
}
|
||||
|
||||
FUZZ_TARGET(feefrac_div_fallback)
|
||||
{
|
||||
// Verify the behavior of FeeFrac::DivFallback over all possible inputs.
|
||||
|
||||
// Construct a 96-bit signed value num, and positive 31-bit value den.
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
auto num_high = provider.ConsumeIntegral<int64_t>();
|
||||
auto num_low = provider.ConsumeIntegral<uint32_t>();
|
||||
std::pair<int64_t, uint32_t> num{num_high, num_low};
|
||||
auto den = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
|
||||
|
||||
// Predict the sign of the actual result.
|
||||
bool is_negative = num_high < 0;
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
|
||||
// value of the quotient is the rounded-up quotient of the absolute values.
|
||||
auto num_abs = Abs256(num);
|
||||
auto den_abs = Abs256(den);
|
||||
auto quot_abs = is_negative ? (num_abs + den_abs - 1) / den_abs : num_abs / den_abs;
|
||||
|
||||
// If the result is not representable by an int64_t, bail out.
|
||||
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Verify the behavior of FeeFrac::DivFallback.
|
||||
auto res = FeeFrac::DivFallback(num, den);
|
||||
assert((res < 0) == is_negative);
|
||||
assert(Abs256(res) == quot_abs);
|
||||
|
||||
// Compare approximately with floating-point.
|
||||
long double expect = std::floorl(num_high * 4294967296.0L + num_low) / den;
|
||||
// Expect to be accurate within 50 bits of precision, +- 1 sat.
|
||||
if (expect == 0.0L) {
|
||||
assert(res >= -1 && res <= 1);
|
||||
} else if (expect > 0.0L) {
|
||||
assert(res >= expect * 0.999999999999999L - 1.0L);
|
||||
assert(res <= expect * 1.000000000000001L + 1.0L);
|
||||
} else {
|
||||
assert(res >= expect * 1.000000000000001L - 1.0L);
|
||||
assert(res <= expect * 0.999999999999999L + 1.0L);
|
||||
}
|
||||
}
|
||||
|
||||
FUZZ_TARGET(feefrac_mul_div)
|
||||
{
|
||||
// Verify the behavior of:
|
||||
// - The combination of FeeFrac::Mul + FeeFrac::Div.
|
||||
// - The combination of FeeFrac::MulFallback + FeeFrac::DivFallback.
|
||||
// - FeeFrac::Evaluate.
|
||||
|
||||
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, and a positive 31-bit
|
||||
// divisor.
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
auto mul32 = provider.ConsumeIntegral<int32_t>();
|
||||
auto mul64 = provider.ConsumeIntegral<int64_t>();
|
||||
auto div = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
|
||||
|
||||
// Predict the sign of the overall result.
|
||||
bool is_negative = ((mul32 < 0) && (mul64 > 0)) || ((mul32 > 0) && (mul64 < 0));
|
||||
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
|
||||
// value of the quotient is the rounded-up quotient of the absolute values.
|
||||
auto prod_abs = Abs256(mul32) * Abs256(mul64);
|
||||
auto div_abs = Abs256(div);
|
||||
auto quot_abs = is_negative ? (prod_abs + div_abs - 1) / div_abs : prod_abs / div_abs;
|
||||
|
||||
// If the result is not representable by an int64_t, bail out.
|
||||
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
|
||||
// If 0 <= mul32 <= div, then the result is guaranteed to be representable.
|
||||
assert(mul32 < 0 || mul32 > div);
|
||||
return;
|
||||
}
|
||||
|
||||
// Verify the behavior of FeeFrac::Mul + FeeFrac::Div.
|
||||
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div);
|
||||
assert((res < 0) == is_negative);
|
||||
assert(Abs256(res) == quot_abs);
|
||||
|
||||
// Verify the behavior of FeeFrac::MulFallback + FeeFrac::DivFallback.
|
||||
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div);
|
||||
assert(res == res_fallback);
|
||||
|
||||
// Compare approximately with floating-point.
|
||||
long double expect = std::floorl(static_cast<long double>(mul32) * mul64 / div);
|
||||
// Expect to be accurate within 50 bits of precision, +- 1 sat.
|
||||
if (expect == 0.0L) {
|
||||
assert(res >= -1 && res <= 1);
|
||||
} else if (expect > 0.0L) {
|
||||
assert(res >= expect * 0.999999999999999L - 1.0L);
|
||||
assert(res <= expect * 1.000000000000001L + 1.0L);
|
||||
} else {
|
||||
assert(res >= expect * 1.000000000000001L - 1.0L);
|
||||
assert(res <= expect * 0.999999999999999L + 1.0L);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user