Add TaprootBuilder class

This class functions as a utility for building taproot outputs, from
internal key and script leaves.
This commit is contained in:
Pieter Wuille
2021-02-01 18:53:24 -08:00
parent 5f6cc8daa8
commit 90fcac365e
7 changed files with 262 additions and 2 deletions

View File

@@ -1484,8 +1484,8 @@ template PrecomputedTransactionData::PrecomputedTransactionData(const CTransacti
template PrecomputedTransactionData::PrecomputedTransactionData(const CMutableTransaction& txTo);
static const CHashWriter HASHER_TAPSIGHASH = TaggedHash("TapSighash");
static const CHashWriter HASHER_TAPLEAF = TaggedHash("TapLeaf");
static const CHashWriter HASHER_TAPBRANCH = TaggedHash("TapBranch");
const CHashWriter HASHER_TAPLEAF = TaggedHash("TapLeaf");
const CHashWriter HASHER_TAPBRANCH = TaggedHash("TapBranch");
static bool HandleMissingData(MissingDataBehavior mdb)
{

View File

@@ -6,6 +6,7 @@
#ifndef BITCOIN_SCRIPT_INTERPRETER_H
#define BITCOIN_SCRIPT_INTERPRETER_H
#include <hash.h>
#include <script/script_error.h>
#include <span.h>
#include <primitives/transaction.h>
@@ -218,6 +219,9 @@ static constexpr size_t TAPROOT_CONTROL_NODE_SIZE = 32;
static constexpr size_t TAPROOT_CONTROL_MAX_NODE_COUNT = 128;
static constexpr size_t TAPROOT_CONTROL_MAX_SIZE = TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * TAPROOT_CONTROL_MAX_NODE_COUNT;
extern const CHashWriter HASHER_TAPLEAF; //!< Hasher with tag "TapLeaf" pre-fed to it.
extern const CHashWriter HASHER_TAPBRANCH; //!< Hasher with tag "TapBranch" pre-fed to it.
template <class T>
uint256 SignatureHash(const CScript& scriptCode, const T& txTo, unsigned int nIn, int nHashType, const CAmount& amount, SigVersion sigversion, const PrecomputedTransactionData* cache = nullptr);

View File

@@ -6,8 +6,11 @@
#include <script/standard.h>
#include <crypto/sha256.h>
#include <hash.h>
#include <pubkey.h>
#include <script/interpreter.h>
#include <script/script.h>
#include <util/strencodings.h>
#include <string>
@@ -370,3 +373,99 @@ CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys)
bool IsValidDestination(const CTxDestination& dest) {
return dest.index() != 0;
}
/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
{
NodeInfo ret;
/* Lexicographically sort a and b's hash, and compute parent hash. */
if (a.hash < b.hash) {
ret.hash = (CHashWriter(HASHER_TAPBRANCH) << a.hash << b.hash).GetSHA256();
} else {
ret.hash = (CHashWriter(HASHER_TAPBRANCH) << b.hash << a.hash).GetSHA256();
}
return ret;
}
void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
{
assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
/* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
* so would mean the Add() invocations do not correspond to a DFS traversal of a
* binary tree. */
if ((size_t)depth + 1 < m_branch.size()) {
m_valid = false;
return;
}
/* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
* The 'node' variable is overwritten here with the newly combined node. */
while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
node = Combine(std::move(node), std::move(*m_branch[depth]));
m_branch.pop_back();
if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
--depth;
}
if (m_valid) {
/* Make sure the branch is big enough to place the new node. */
if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
assert(!m_branch[depth].has_value());
m_branch[depth] = std::move(node);
}
}
/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
{
std::vector<bool> branch;
for (int depth : depths) {
// This inner loop corresponds to effectively the same logic on branch
// as what Insert() performs on the m_branch variable. Instead of
// storing a NodeInfo object, just remember whether or not there is one
// at that depth.
if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
if ((size_t)depth + 1 < branch.size()) return false;
while (branch.size() > (size_t)depth && branch[depth]) {
branch.pop_back();
if (depth == 0) return false;
--depth;
}
if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
assert(!branch[depth]);
branch[depth] = true;
}
// And this check corresponds to the IsComplete() check on m_branch.
return branch.size() == 0 || (branch.size() == 1 && branch[0]);
}
TaprootBuilder& TaprootBuilder::Add(int depth, const CScript& script, int leaf_version)
{
assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
if (!IsValid()) return *this;
/* Construct NodeInfo object with leaf hash. */
NodeInfo node;
node.hash = (CHashWriter{HASHER_TAPLEAF} << uint8_t(leaf_version) << script).GetSHA256();
/* Insert into the branch. */
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
{
if (!IsValid()) return *this;
/* Construct NodeInfo object with the hash directly, and insert it into the branch. */
NodeInfo node;
node.hash = hash;
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
{
/* Can only call this function when IsComplete() is true. */
assert(IsComplete());
m_internal_key = internal_key;
auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
assert(ret.has_value());
std::tie(m_output_key, std::ignore) = *ret;
return *this;
}
WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }

View File

@@ -209,4 +209,82 @@ CScript GetScriptForRawPubKey(const CPubKey& pubkey);
/** Generate a multisig script. */
CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys);
/** Utility class to construct Taproot outputs from internal key and script tree. */
class TaprootBuilder
{
private:
/** Information associated with a node in the Merkle tree. */
struct NodeInfo
{
/** Merkle hash of this node. */
uint256 hash;
};
/** Whether the builder is in a valid state so far. */
bool m_valid = true;
/** The current state of the builder.
*
* For each level in the tree, one NodeInfo object may be present. m_branch[0]
* is information about the root; further values are for deeper subtrees being
* explored.
*
* For every right branch taken to reach the position we're currently
* working in, there will be a (non-nullopt) entry in m_branch corresponding
* to the left branch at that level.
*
* For example, imagine this tree: - N0 -
* / \
* N1 N2
* / \ / \
* A B C N3
* / \
* D E
*
* Initially, m_branch is empty. After processing leaf A, it would become
* {nullopt, nullopt, A}. When processing leaf B, an entry at level 2 already
* exists, and it would thus be combined with it to produce a level 1 one,
* resulting in {nullopt, N1}. Adding C and D takes us to {nullopt, N1, C}
* and {nullopt, N1, C, D} respectively. When E is processed, it is combined
* with D, and then C, and then N1, to produce the root, resulting in {N0}.
*
* This structure allows processing with just O(log n) overhead if the leaves
* are computed on the fly.
*
* As an invariant, there can never be nullopt entries at the end. There can
* also not be more than 128 entries (as that would mean more than 128 levels
* in the tree). The depth of newly added entries will always be at least
* equal to the current size of m_branch (otherwise it does not correspond
* to a depth-first traversal of a tree). m_branch is only empty if no entries
* have ever be processed. m_branch having length 1 corresponds to being done.
*/
std::vector<std::optional<NodeInfo>> m_branch;
XOnlyPubKey m_internal_key; //!< The internal key, set when finalizing.
XOnlyPubKey m_output_key; //!< The output key, computed when finalizing. */
/** Combine information about a parent Merkle tree node from its child nodes. */
static NodeInfo Combine(NodeInfo&& a, NodeInfo&& b);
/** Insert information about a node at a certain depth, and propagate information up. */
void Insert(NodeInfo&& node, int depth);
public:
/** Add a new script at a certain depth in the tree. Add() operations must be called
* in depth-first traversal order of binary tree. */
TaprootBuilder& Add(int depth, const CScript& script, int leaf_version);
/** Like Add(), but for a Merkle node with a given hash to the tree. */
TaprootBuilder& AddOmitted(int depth, const uint256& hash);
/** Finalize the construction. Can only be called when IsComplete() is true.
internal_key.IsFullyValid() must be true. */
TaprootBuilder& Finalize(const XOnlyPubKey& internal_key);
/** Return true if so far all input was valid. */
bool IsValid() const { return m_valid; }
/** Return whether there were either no leaves, or the leaves form a Huffman tree. */
bool IsComplete() const { return m_valid && (m_branch.size() == 0 || (m_branch.size() == 1 && m_branch[0].has_value())); }
/** Compute scriptPubKey (after Finalize()). */
WitnessV1Taproot GetOutput();
/** Check if a list of depths is legal (will lead to IsComplete()). */
static bool ValidDepths(const std::vector<int>& depths);
};
#endif // BITCOIN_SCRIPT_STANDARD_H