mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-03-17 13:22:03 +01:00
Merge 8400928ba1d0e89547c480482a41e05edda05126 into db2c57ae9eebdb75c58cd165ac929919969c19a9
This commit is contained in:
commit
91b716a3a7
@ -301,6 +301,7 @@ add_library(bitcoin_node STATIC EXCLUDE_FROM_ALL
|
||||
signet.cpp
|
||||
torcontrol.cpp
|
||||
txdb.cpp
|
||||
txgraph.cpp
|
||||
txmempool.cpp
|
||||
txorphanage.cpp
|
||||
txrequest.cpp
|
||||
|
@ -23,10 +23,10 @@ namespace {
|
||||
* remaining transaction, whose removal requires updating all remaining transactions' ancestor
|
||||
* set feerates. */
|
||||
template<typename SetType>
|
||||
DepGraph<SetType> MakeLinearGraph(ClusterIndex ntx)
|
||||
DepGraph<SetType> MakeLinearGraph(DepGraphIndex ntx)
|
||||
{
|
||||
DepGraph<SetType> depgraph;
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) {
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) {
|
||||
depgraph.AddTransaction({-int32_t(i), 1});
|
||||
if (i > 0) depgraph.AddDependencies(SetType::Singleton(i - 1), i);
|
||||
}
|
||||
@ -38,10 +38,10 @@ DepGraph<SetType> MakeLinearGraph(ClusterIndex ntx)
|
||||
* rechunking is needed after every candidate (the last transaction gets picked every time).
|
||||
*/
|
||||
template<typename SetType>
|
||||
DepGraph<SetType> MakeWideGraph(ClusterIndex ntx)
|
||||
DepGraph<SetType> MakeWideGraph(DepGraphIndex ntx)
|
||||
{
|
||||
DepGraph<SetType> depgraph;
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) {
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) {
|
||||
depgraph.AddTransaction({int32_t(i) + 1, 1});
|
||||
if (i > 0) depgraph.AddDependencies(SetType::Singleton(0), i);
|
||||
}
|
||||
@ -51,10 +51,10 @@ DepGraph<SetType> MakeWideGraph(ClusterIndex ntx)
|
||||
// Construct a difficult graph. These need at least sqrt(2^(n-1)) iterations in the implemented
|
||||
// algorithm (purely empirically determined).
|
||||
template<typename SetType>
|
||||
DepGraph<SetType> MakeHardGraph(ClusterIndex ntx)
|
||||
DepGraph<SetType> MakeHardGraph(DepGraphIndex ntx)
|
||||
{
|
||||
DepGraph<SetType> depgraph;
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) {
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) {
|
||||
if (ntx & 1) {
|
||||
// Odd cluster size.
|
||||
//
|
||||
@ -121,7 +121,7 @@ DepGraph<SetType> MakeHardGraph(ClusterIndex ntx)
|
||||
* iterations difference.
|
||||
*/
|
||||
template<typename SetType>
|
||||
void BenchLinearizeWorstCase(ClusterIndex ntx, benchmark::Bench& bench, uint64_t iter_limit)
|
||||
void BenchLinearizeWorstCase(DepGraphIndex ntx, benchmark::Bench& bench, uint64_t iter_limit)
|
||||
{
|
||||
const auto depgraph = MakeHardGraph<SetType>(ntx);
|
||||
uint64_t rng_seed = 0;
|
||||
@ -147,12 +147,12 @@ void BenchLinearizeWorstCase(ClusterIndex ntx, benchmark::Bench& bench, uint64_t
|
||||
* cheap.
|
||||
*/
|
||||
template<typename SetType>
|
||||
void BenchLinearizeNoItersWorstCaseAnc(ClusterIndex ntx, benchmark::Bench& bench)
|
||||
void BenchLinearizeNoItersWorstCaseAnc(DepGraphIndex ntx, benchmark::Bench& bench)
|
||||
{
|
||||
const auto depgraph = MakeLinearGraph<SetType>(ntx);
|
||||
uint64_t rng_seed = 0;
|
||||
std::vector<ClusterIndex> old_lin(ntx);
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) old_lin[i] = i;
|
||||
std::vector<DepGraphIndex> old_lin(ntx);
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) old_lin[i] = i;
|
||||
bench.run([&] {
|
||||
Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
|
||||
});
|
||||
@ -167,41 +167,41 @@ void BenchLinearizeNoItersWorstCaseAnc(ClusterIndex ntx, benchmark::Bench& bench
|
||||
* AncestorCandidateFinder is cheap.
|
||||
*/
|
||||
template<typename SetType>
|
||||
void BenchLinearizeNoItersWorstCaseLIMO(ClusterIndex ntx, benchmark::Bench& bench)
|
||||
void BenchLinearizeNoItersWorstCaseLIMO(DepGraphIndex ntx, benchmark::Bench& bench)
|
||||
{
|
||||
const auto depgraph = MakeWideGraph<SetType>(ntx);
|
||||
uint64_t rng_seed = 0;
|
||||
std::vector<ClusterIndex> old_lin(ntx);
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) old_lin[i] = i;
|
||||
std::vector<DepGraphIndex> old_lin(ntx);
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) old_lin[i] = i;
|
||||
bench.run([&] {
|
||||
Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
|
||||
});
|
||||
}
|
||||
|
||||
template<typename SetType>
|
||||
void BenchPostLinearizeWorstCase(ClusterIndex ntx, benchmark::Bench& bench)
|
||||
void BenchPostLinearizeWorstCase(DepGraphIndex ntx, benchmark::Bench& bench)
|
||||
{
|
||||
DepGraph<SetType> depgraph = MakeWideGraph<SetType>(ntx);
|
||||
std::vector<ClusterIndex> lin(ntx);
|
||||
std::vector<DepGraphIndex> lin(ntx);
|
||||
bench.run([&] {
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) lin[i] = i;
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) lin[i] = i;
|
||||
PostLinearize(depgraph, lin);
|
||||
});
|
||||
}
|
||||
|
||||
template<typename SetType>
|
||||
void BenchMergeLinearizationsWorstCase(ClusterIndex ntx, benchmark::Bench& bench)
|
||||
void BenchMergeLinearizationsWorstCase(DepGraphIndex ntx, benchmark::Bench& bench)
|
||||
{
|
||||
DepGraph<SetType> depgraph;
|
||||
for (ClusterIndex i = 0; i < ntx; ++i) {
|
||||
for (DepGraphIndex i = 0; i < ntx; ++i) {
|
||||
depgraph.AddTransaction({i, 1});
|
||||
if (i) depgraph.AddDependencies(SetType::Singleton(0), i);
|
||||
}
|
||||
std::vector<ClusterIndex> lin1;
|
||||
std::vector<ClusterIndex> lin2;
|
||||
std::vector<DepGraphIndex> lin1;
|
||||
std::vector<DepGraphIndex> lin2;
|
||||
lin1.push_back(0);
|
||||
lin2.push_back(0);
|
||||
for (ClusterIndex i = 1; i < ntx; ++i) {
|
||||
for (DepGraphIndex i = 1; i < ntx; ++i) {
|
||||
lin1.push_back(i);
|
||||
lin2.push_back(ntx - i);
|
||||
}
|
||||
@ -214,7 +214,7 @@ template<size_t N>
|
||||
void BenchLinearizeOptimally(benchmark::Bench& bench, const std::array<uint8_t, N>& serialized)
|
||||
{
|
||||
// Determine how many transactions the serialized cluster has.
|
||||
ClusterIndex num_tx{0};
|
||||
DepGraphIndex num_tx{0};
|
||||
{
|
||||
SpanReader reader{serialized};
|
||||
DepGraph<BitSet<128>> depgraph;
|
||||
|
@ -19,8 +19,8 @@
|
||||
|
||||
namespace cluster_linearize {
|
||||
|
||||
/** Data type to represent transaction indices in clusters. */
|
||||
using ClusterIndex = uint32_t;
|
||||
/** Data type to represent transaction indices in DepGraphs and the clusters they represent. */
|
||||
using DepGraphIndex = uint32_t;
|
||||
|
||||
/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
|
||||
* descendants). */
|
||||
@ -86,11 +86,11 @@ public:
|
||||
*
|
||||
* Complexity: O(N^2) where N=depgraph.TxCount().
|
||||
*/
|
||||
DepGraph(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> mapping, ClusterIndex pos_range) noexcept : entries(pos_range)
|
||||
DepGraph(const DepGraph<SetType>& depgraph, Span<const DepGraphIndex> mapping, DepGraphIndex pos_range) noexcept : entries(pos_range)
|
||||
{
|
||||
Assume(mapping.size() == depgraph.PositionRange());
|
||||
Assume((pos_range == 0) == (depgraph.TxCount() == 0));
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
auto new_idx = mapping[i];
|
||||
Assume(new_idx < pos_range);
|
||||
// Add transaction.
|
||||
@ -100,7 +100,7 @@ public:
|
||||
// Fill in fee and size.
|
||||
entries[new_idx].feerate = depgraph.entries[i].feerate;
|
||||
}
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
// Fill in dependencies by mapping direct parents.
|
||||
SetType parents;
|
||||
for (auto j : depgraph.GetReducedParents(i)) parents.Set(mapping[j]);
|
||||
@ -113,29 +113,29 @@ public:
|
||||
/** Get the set of transactions positions in use. Complexity: O(1). */
|
||||
const SetType& Positions() const noexcept { return m_used; }
|
||||
/** Get the range of positions in this DepGraph. All entries in Positions() are in [0, PositionRange() - 1]. */
|
||||
ClusterIndex PositionRange() const noexcept { return entries.size(); }
|
||||
DepGraphIndex PositionRange() const noexcept { return entries.size(); }
|
||||
/** Get the number of transactions in the graph. Complexity: O(1). */
|
||||
auto TxCount() const noexcept { return m_used.Count(); }
|
||||
/** Get the feerate of a given transaction i. Complexity: O(1). */
|
||||
const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
|
||||
const FeeFrac& FeeRate(DepGraphIndex i) const noexcept { return entries[i].feerate; }
|
||||
/** Get the mutable feerate of a given transaction i. Complexity: O(1). */
|
||||
FeeFrac& FeeRate(ClusterIndex i) noexcept { return entries[i].feerate; }
|
||||
FeeFrac& FeeRate(DepGraphIndex i) noexcept { return entries[i].feerate; }
|
||||
/** Get the ancestors of a given transaction i. Complexity: O(1). */
|
||||
const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
|
||||
const SetType& Ancestors(DepGraphIndex i) const noexcept { return entries[i].ancestors; }
|
||||
/** Get the descendants of a given transaction i. Complexity: O(1). */
|
||||
const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
|
||||
const SetType& Descendants(DepGraphIndex i) const noexcept { return entries[i].descendants; }
|
||||
|
||||
/** Add a new unconnected transaction to this transaction graph (in the first available
|
||||
* position), and return its ClusterIndex.
|
||||
* position), and return its DepGraphIndex.
|
||||
*
|
||||
* Complexity: O(1) (amortized, due to resizing of backing vector).
|
||||
*/
|
||||
ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
|
||||
DepGraphIndex AddTransaction(const FeeFrac& feefrac) noexcept
|
||||
{
|
||||
static constexpr auto ALL_POSITIONS = SetType::Fill(SetType::Size());
|
||||
auto available = ALL_POSITIONS - m_used;
|
||||
Assume(available.Any());
|
||||
ClusterIndex new_idx = available.First();
|
||||
DepGraphIndex new_idx = available.First();
|
||||
if (new_idx == entries.size()) {
|
||||
entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
|
||||
} else {
|
||||
@ -174,7 +174,7 @@ public:
|
||||
*
|
||||
* Complexity: O(N) where N=TxCount().
|
||||
*/
|
||||
void AddDependencies(const SetType& parents, ClusterIndex child) noexcept
|
||||
void AddDependencies(const SetType& parents, DepGraphIndex child) noexcept
|
||||
{
|
||||
Assume(m_used[child]);
|
||||
Assume(parents.IsSubsetOf(m_used));
|
||||
@ -205,7 +205,7 @@ public:
|
||||
*
|
||||
* Complexity: O(N) where N=Ancestors(i).Count() (which is bounded by TxCount()).
|
||||
*/
|
||||
SetType GetReducedParents(ClusterIndex i) const noexcept
|
||||
SetType GetReducedParents(DepGraphIndex i) const noexcept
|
||||
{
|
||||
SetType parents = Ancestors(i);
|
||||
parents.Reset(i);
|
||||
@ -226,7 +226,7 @@ public:
|
||||
*
|
||||
* Complexity: O(N) where N=Descendants(i).Count() (which is bounded by TxCount()).
|
||||
*/
|
||||
SetType GetReducedChildren(ClusterIndex i) const noexcept
|
||||
SetType GetReducedChildren(DepGraphIndex i) const noexcept
|
||||
{
|
||||
SetType children = Descendants(i);
|
||||
children.Reset(i);
|
||||
@ -298,17 +298,28 @@ public:
|
||||
*
|
||||
* Complexity: O(select.Count() * log(select.Count())).
|
||||
*/
|
||||
void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
|
||||
void AppendTopo(std::vector<DepGraphIndex>& list, const SetType& select) const noexcept
|
||||
{
|
||||
ClusterIndex old_len = list.size();
|
||||
DepGraphIndex old_len = list.size();
|
||||
for (auto i : select) list.push_back(i);
|
||||
std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
|
||||
std::sort(list.begin() + old_len, list.end(), [&](DepGraphIndex a, DepGraphIndex b) noexcept {
|
||||
const auto a_anc_count = entries[a].ancestors.Count();
|
||||
const auto b_anc_count = entries[b].ancestors.Count();
|
||||
if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
|
||||
return a < b;
|
||||
});
|
||||
}
|
||||
|
||||
/** Check if this graph is acyclic. */
|
||||
bool IsAcyclic() const noexcept
|
||||
{
|
||||
for (auto i : Positions()) {
|
||||
if ((Ancestors(i) & Descendants(i)) != SetType::Singleton(i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
/** A set of transactions together with their aggregate feerate. */
|
||||
@ -327,7 +338,7 @@ struct SetInfo
|
||||
SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
|
||||
|
||||
/** Construct a SetInfo for a given transaction in a depgraph. */
|
||||
explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
|
||||
explicit SetInfo(const DepGraph<SetType>& depgraph, DepGraphIndex pos) noexcept :
|
||||
transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
|
||||
|
||||
/** Construct a SetInfo for a set of transactions in a depgraph. */
|
||||
@ -335,7 +346,7 @@ struct SetInfo
|
||||
transactions(txn), feerate(depgraph.FeeRate(txn)) {}
|
||||
|
||||
/** Add a transaction to this SetInfo (which must not yet be in it). */
|
||||
void Set(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept
|
||||
void Set(const DepGraph<SetType>& depgraph, DepGraphIndex pos) noexcept
|
||||
{
|
||||
Assume(!transactions[pos]);
|
||||
transactions.Set(pos);
|
||||
@ -371,10 +382,10 @@ struct SetInfo
|
||||
|
||||
/** Compute the feerates of the chunks of linearization. */
|
||||
template<typename SetType>
|
||||
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
|
||||
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const DepGraphIndex> linearization) noexcept
|
||||
{
|
||||
std::vector<FeeFrac> ret;
|
||||
for (ClusterIndex i : linearization) {
|
||||
for (DepGraphIndex i : linearization) {
|
||||
/** The new chunk to be added, initially a singleton. */
|
||||
auto new_chunk = depgraph.FeeRate(i);
|
||||
// As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
|
||||
@ -396,13 +407,13 @@ class LinearizationChunking
|
||||
const DepGraph<SetType>& m_depgraph;
|
||||
|
||||
/** The linearization we started from, possibly with removed prefix stripped. */
|
||||
Span<const ClusterIndex> m_linearization;
|
||||
Span<const DepGraphIndex> m_linearization;
|
||||
|
||||
/** Chunk sets and their feerates, of what remains of the linearization. */
|
||||
std::vector<SetInfo<SetType>> m_chunks;
|
||||
|
||||
/** How large a prefix of m_chunks corresponds to removed transactions. */
|
||||
ClusterIndex m_chunks_skip{0};
|
||||
DepGraphIndex m_chunks_skip{0};
|
||||
|
||||
/** Which transactions remain in the linearization. */
|
||||
SetType m_todo;
|
||||
@ -437,7 +448,7 @@ class LinearizationChunking
|
||||
|
||||
public:
|
||||
/** Initialize a LinearizationSubset object for a given length of linearization. */
|
||||
explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
|
||||
explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const DepGraphIndex> lin LIFETIMEBOUND) noexcept :
|
||||
m_depgraph(depgraph), m_linearization(lin)
|
||||
{
|
||||
// Mark everything in lin as todo still.
|
||||
@ -448,10 +459,10 @@ public:
|
||||
}
|
||||
|
||||
/** Determine how many chunks remain in the linearization. */
|
||||
ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
|
||||
DepGraphIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
|
||||
|
||||
/** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
|
||||
const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
|
||||
const SetInfo<SetType>& GetChunk(DepGraphIndex n) const noexcept
|
||||
{
|
||||
Assume(n + m_chunks_skip < m_chunks.size());
|
||||
return m_chunks[n + m_chunks_skip];
|
||||
@ -494,7 +505,7 @@ public:
|
||||
Assume(subset.transactions.IsSubsetOf(m_todo));
|
||||
SetInfo<SetType> accumulator;
|
||||
// Iterate over all chunks of the remaining linearization.
|
||||
for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < NumChunksLeft(); ++i) {
|
||||
// Find what (if any) intersection the chunk has with subset.
|
||||
const SetType to_add = GetChunk(i).transactions & subset.transactions;
|
||||
if (to_add.Any()) {
|
||||
@ -546,13 +557,13 @@ public:
|
||||
m_ancestor_set_feerates(depgraph.PositionRange())
|
||||
{
|
||||
// Precompute ancestor-set feerates.
|
||||
for (ClusterIndex i : m_depgraph.Positions()) {
|
||||
for (DepGraphIndex i : m_depgraph.Positions()) {
|
||||
/** The remaining ancestors for transaction i. */
|
||||
SetType anc_to_add = m_depgraph.Ancestors(i);
|
||||
FeeFrac anc_feerate;
|
||||
// Reuse accumulated feerate from first ancestor, if usable.
|
||||
Assume(anc_to_add.Any());
|
||||
ClusterIndex first = anc_to_add.First();
|
||||
DepGraphIndex first = anc_to_add.First();
|
||||
if (first < i) {
|
||||
anc_feerate = m_ancestor_set_feerates[first];
|
||||
Assume(!anc_feerate.IsEmpty());
|
||||
@ -592,7 +603,7 @@ public:
|
||||
}
|
||||
|
||||
/** Count the number of remaining unlinearized transactions. */
|
||||
ClusterIndex NumRemaining() const noexcept
|
||||
DepGraphIndex NumRemaining() const noexcept
|
||||
{
|
||||
return m_todo.Count();
|
||||
}
|
||||
@ -605,7 +616,7 @@ public:
|
||||
SetInfo<SetType> FindCandidateSet() const noexcept
|
||||
{
|
||||
Assume(!AllDone());
|
||||
std::optional<ClusterIndex> best;
|
||||
std::optional<DepGraphIndex> best;
|
||||
for (auto i : m_todo) {
|
||||
if (best.has_value()) {
|
||||
Assume(!m_ancestor_set_feerates[i].IsEmpty());
|
||||
@ -633,9 +644,9 @@ class SearchCandidateFinder
|
||||
/** Internal RNG. */
|
||||
InsecureRandomContext m_rng;
|
||||
/** m_sorted_to_original[i] is the original position that sorted transaction position i had. */
|
||||
std::vector<ClusterIndex> m_sorted_to_original;
|
||||
std::vector<DepGraphIndex> m_sorted_to_original;
|
||||
/** m_original_to_sorted[i] is the sorted position original transaction position i has. */
|
||||
std::vector<ClusterIndex> m_original_to_sorted;
|
||||
std::vector<DepGraphIndex> m_original_to_sorted;
|
||||
/** Internal dependency graph for the cluster (with transactions in decreasing individual
|
||||
* feerate order). */
|
||||
DepGraph<SetType> m_sorted_depgraph;
|
||||
@ -673,7 +684,7 @@ public:
|
||||
{
|
||||
// Determine reordering mapping, by sorting by decreasing feerate. Unused positions are
|
||||
// not included, as they will never be looked up anyway.
|
||||
ClusterIndex sorted_pos{0};
|
||||
DepGraphIndex sorted_pos{0};
|
||||
for (auto i : depgraph.Positions()) {
|
||||
m_sorted_to_original[sorted_pos++] = i;
|
||||
}
|
||||
@ -683,7 +694,7 @@ public:
|
||||
return feerate_cmp > 0;
|
||||
});
|
||||
// Compute reverse mapping.
|
||||
for (ClusterIndex i = 0; i < m_sorted_to_original.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < m_sorted_to_original.size(); ++i) {
|
||||
m_original_to_sorted[m_sorted_to_original[i]] = i;
|
||||
}
|
||||
// Compute reordered dependency graph.
|
||||
@ -782,7 +793,7 @@ public:
|
||||
/** The set of transactions in m_todo which have feerate > best's. */
|
||||
SetType imp = m_todo;
|
||||
while (imp.Any()) {
|
||||
ClusterIndex check = imp.Last();
|
||||
DepGraphIndex check = imp.Last();
|
||||
if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
|
||||
imp.Reset(check);
|
||||
}
|
||||
@ -839,7 +850,7 @@ public:
|
||||
best = inc;
|
||||
// See if we can remove any entries from imp now.
|
||||
while (imp.Any()) {
|
||||
ClusterIndex check = imp.Last();
|
||||
DepGraphIndex check = imp.Last();
|
||||
if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
|
||||
imp.Reset(check);
|
||||
}
|
||||
@ -880,7 +891,7 @@ public:
|
||||
// If pot is empty, then so is inc.
|
||||
Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty());
|
||||
|
||||
const ClusterIndex first = elem.und.First();
|
||||
const DepGraphIndex first = elem.und.First();
|
||||
if (!elem.inc.feerate.IsEmpty()) {
|
||||
// If no undecided transactions remain with feerate higher than best, this entry
|
||||
// cannot be improved beyond best.
|
||||
@ -906,17 +917,17 @@ public:
|
||||
// most. Let I(t) be the size of the undecided set after including t, and E(t) the size
|
||||
// of the undecided set after excluding t. Then choose the split transaction t such
|
||||
// that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t.
|
||||
ClusterIndex split = 0;
|
||||
DepGraphIndex split = 0;
|
||||
const auto select = elem.und & m_sorted_depgraph.Ancestors(first);
|
||||
Assume(select.Any());
|
||||
std::optional<std::pair<ClusterIndex, ClusterIndex>> split_counts;
|
||||
std::optional<std::pair<DepGraphIndex, DepGraphIndex>> split_counts;
|
||||
for (auto t : select) {
|
||||
// Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}.
|
||||
// Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This
|
||||
// expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second
|
||||
// factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always
|
||||
// increase it, even when min decreases. Because of this, we can first sort by max.
|
||||
std::pair<ClusterIndex, ClusterIndex> counts{
|
||||
std::pair<DepGraphIndex, DepGraphIndex> counts{
|
||||
(elem.und - m_sorted_depgraph.Ancestors(t)).Count(),
|
||||
(elem.und - m_sorted_depgraph.Descendants(t)).Count()};
|
||||
if (counts.first < counts.second) std::swap(counts.first, counts.second);
|
||||
@ -1016,13 +1027,13 @@ public:
|
||||
* Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
|
||||
*/
|
||||
template<typename SetType>
|
||||
std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
|
||||
std::pair<std::vector<DepGraphIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const DepGraphIndex> old_linearization = {}) noexcept
|
||||
{
|
||||
Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
|
||||
if (depgraph.TxCount() == 0) return {{}, true};
|
||||
|
||||
uint64_t iterations_left = max_iterations;
|
||||
std::vector<ClusterIndex> linearization;
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
|
||||
AncestorCandidateFinder anc_finder(depgraph);
|
||||
std::optional<SearchCandidateFinder<SetType>> src_finder;
|
||||
@ -1110,7 +1121,7 @@ std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& de
|
||||
* postlinearize" process.
|
||||
*/
|
||||
template<typename SetType>
|
||||
void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization)
|
||||
void PostLinearize(const DepGraph<SetType>& depgraph, Span<DepGraphIndex> linearization)
|
||||
{
|
||||
// This algorithm performs a number of passes (currently 2); the even ones operate from back to
|
||||
// front, the odd ones from front to back. Each results in an equal-or-better linearization
|
||||
@ -1148,9 +1159,9 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
// entries[0].
|
||||
|
||||
/** Index of the sentinel in the entries array below. */
|
||||
static constexpr ClusterIndex SENTINEL{0};
|
||||
static constexpr DepGraphIndex SENTINEL{0};
|
||||
/** Indicator that a group has no previous transaction. */
|
||||
static constexpr ClusterIndex NO_PREV_TX{0};
|
||||
static constexpr DepGraphIndex NO_PREV_TX{0};
|
||||
|
||||
|
||||
/** Data structure per transaction entry. */
|
||||
@ -1158,16 +1169,16 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
{
|
||||
/** The index of the previous transaction in this group; NO_PREV_TX if this is the first
|
||||
* entry of a group. */
|
||||
ClusterIndex prev_tx;
|
||||
DepGraphIndex prev_tx;
|
||||
|
||||
// The fields below are only used for transactions that are the last one in a group
|
||||
// (referred to as tail transactions below).
|
||||
|
||||
/** Index of the first transaction in this group, possibly itself. */
|
||||
ClusterIndex first_tx;
|
||||
DepGraphIndex first_tx;
|
||||
/** Index of the last transaction in the previous group. The first group (the sentinel)
|
||||
* points back to the last group here, making it a singly-linked circular list. */
|
||||
ClusterIndex prev_group;
|
||||
DepGraphIndex prev_group;
|
||||
/** All transactions in the group. Empty for the sentinel. */
|
||||
SetType group;
|
||||
/** All dependencies of the group (descendants in even passes; ancestors in odd ones). */
|
||||
@ -1210,12 +1221,12 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
Assume(entries[SENTINEL].feerate.IsEmpty());
|
||||
|
||||
// Iterate over all elements in the existing linearization.
|
||||
for (ClusterIndex i = 0; i < linearization.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < linearization.size(); ++i) {
|
||||
// Even passes are from back to front; odd passes from front to back.
|
||||
ClusterIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
|
||||
DepGraphIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
|
||||
// Construct a new group containing just idx. In even passes, the meaning of
|
||||
// parent/child and high/low feerate are swapped.
|
||||
ClusterIndex cur_group = idx + 1;
|
||||
DepGraphIndex cur_group = idx + 1;
|
||||
entries[cur_group].group = SetType::Singleton(idx);
|
||||
entries[cur_group].deps = rev ? depgraph.Descendants(idx): depgraph.Ancestors(idx);
|
||||
entries[cur_group].feerate = depgraph.FeeRate(idx);
|
||||
@ -1227,8 +1238,8 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
entries[SENTINEL].prev_group = cur_group;
|
||||
|
||||
// Start merge/swap cycle.
|
||||
ClusterIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
|
||||
ClusterIndex prev_group = entries[cur_group].prev_group;
|
||||
DepGraphIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
|
||||
DepGraphIndex prev_group = entries[cur_group].prev_group;
|
||||
// Continue as long as the current group has higher feerate than the previous one.
|
||||
while (entries[cur_group].feerate >> entries[prev_group].feerate) {
|
||||
// prev_group/cur_group/next_group refer to (the last transactions of) 3
|
||||
@ -1256,7 +1267,7 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
entries[cur_group].prev_group = prev_group;
|
||||
} else {
|
||||
// There is no dependency between cur_group and prev_group; swap them.
|
||||
ClusterIndex preprev_group = entries[prev_group].prev_group;
|
||||
DepGraphIndex preprev_group = entries[prev_group].prev_group;
|
||||
// If PP, P, C, N were the old preprev, prev, cur, next groups, then the new
|
||||
// layout becomes [PP, C, P, N]. Update prev_groups to reflect that order.
|
||||
entries[next_group].prev_group = prev_group;
|
||||
@ -1271,10 +1282,10 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
}
|
||||
|
||||
// Convert the entries back to linearization (overwriting the existing one).
|
||||
ClusterIndex cur_group = entries[0].prev_group;
|
||||
ClusterIndex done = 0;
|
||||
DepGraphIndex cur_group = entries[0].prev_group;
|
||||
DepGraphIndex done = 0;
|
||||
while (cur_group != SENTINEL) {
|
||||
ClusterIndex cur_tx = cur_group;
|
||||
DepGraphIndex cur_tx = cur_group;
|
||||
// Traverse the transactions of cur_group (from back to front), and write them in the
|
||||
// same order during odd passes, and reversed (front to back) in even passes.
|
||||
if (rev) {
|
||||
@ -1299,7 +1310,7 @@ void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> lineari
|
||||
* Complexity: O(N^2) where N=depgraph.TxCount(); O(N) if both inputs are identical.
|
||||
*/
|
||||
template<typename SetType>
|
||||
std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> lin1, Span<const ClusterIndex> lin2)
|
||||
std::vector<DepGraphIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const DepGraphIndex> lin1, Span<const DepGraphIndex> lin2)
|
||||
{
|
||||
Assume(lin1.size() == depgraph.TxCount());
|
||||
Assume(lin2.size() == depgraph.TxCount());
|
||||
@ -1307,7 +1318,7 @@ std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph,
|
||||
/** Chunkings of what remains of both input linearizations. */
|
||||
LinearizationChunking chunking1(depgraph, lin1), chunking2(depgraph, lin2);
|
||||
/** Output linearization. */
|
||||
std::vector<ClusterIndex> ret;
|
||||
std::vector<DepGraphIndex> ret;
|
||||
if (depgraph.TxCount() == 0) return ret;
|
||||
ret.reserve(depgraph.TxCount());
|
||||
|
||||
@ -1336,6 +1347,38 @@ std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph,
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Make linearization topological, retaining its ordering where possible. */
|
||||
template<typename SetType>
|
||||
void FixLinearization(const DepGraph<SetType>& depgraph, Span<DepGraphIndex> linearization) noexcept
|
||||
{
|
||||
// This algorithm can be summarized as moving every element in the linearization backwards
|
||||
// until it is placed after all its ancestors.
|
||||
SetType done;
|
||||
const auto len = linearization.size();
|
||||
// Iterate over the elements of linearization from back to front (i is distance from back).
|
||||
for (DepGraphIndex i = 0; i < len; ++i) {
|
||||
/** The element at that position. */
|
||||
DepGraphIndex elem = linearization[len - 1 - i];
|
||||
/** j represents how far from the back of the linearization elem should be placed. */
|
||||
DepGraphIndex j = i;
|
||||
// Figure out which elements need to be moved before elem.
|
||||
SetType place_before = done & depgraph.Ancestors(elem);
|
||||
// Find which position to place elem in (updating j), continuously moving the elements
|
||||
// in between forward.
|
||||
while (place_before.Any()) {
|
||||
// j cannot be 0 here; if it was, then there was necessarily nothing earlier which
|
||||
// elem needs to be place before anymore, and place_before would be empty.
|
||||
Assume(j > 0);
|
||||
auto to_swap = linearization[len - 1 - (j - 1)];
|
||||
place_before.Reset(to_swap);
|
||||
linearization[len - 1 - (j--)] = to_swap;
|
||||
}
|
||||
// Put elem in its final position and mark it as done.
|
||||
linearization[len - 1 - j] = elem;
|
||||
done.Set(elem);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cluster_linearize
|
||||
|
||||
#endif // BITCOIN_CLUSTER_LINEARIZE_H
|
||||
|
@ -28,11 +28,11 @@ void TestDepGraphSerialization(const std::vector<std::pair<FeeFrac, SetType>>& c
|
||||
// Construct DepGraph from cluster argument.
|
||||
DepGraph<SetType> depgraph;
|
||||
SetType holes;
|
||||
for (ClusterIndex i = 0; i < cluster.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < cluster.size(); ++i) {
|
||||
depgraph.AddTransaction(cluster[i].first);
|
||||
if (cluster[i] == HOLE) holes.Set(i);
|
||||
}
|
||||
for (ClusterIndex i = 0; i < cluster.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < cluster.size(); ++i) {
|
||||
depgraph.AddDependencies(cluster[i].second, i);
|
||||
}
|
||||
depgraph.RemoveTransactions(holes);
|
||||
|
@ -124,6 +124,7 @@ add_executable(fuzz
|
||||
tx_in.cpp
|
||||
tx_out.cpp
|
||||
tx_pool.cpp
|
||||
txgraph.cpp
|
||||
txorphan.cpp
|
||||
txrequest.cpp
|
||||
# Visual Studio 2022 version 17.12 introduced a bug
|
||||
|
@ -149,9 +149,9 @@ public:
|
||||
* than AncestorCandidateFinder and SearchCandidateFinder.
|
||||
*/
|
||||
template<typename SetType>
|
||||
std::pair<std::vector<ClusterIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
|
||||
std::pair<std::vector<DepGraphIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
|
||||
{
|
||||
std::vector<ClusterIndex> linearization;
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
SimpleCandidateFinder finder(depgraph);
|
||||
SetType todo = depgraph.Positions();
|
||||
bool optimal = true;
|
||||
@ -203,9 +203,9 @@ SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& tod
|
||||
|
||||
/** Given a dependency graph, construct any valid linearization for it, reading from a SpanReader. */
|
||||
template<typename BS>
|
||||
std::vector<ClusterIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader)
|
||||
std::vector<DepGraphIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader)
|
||||
{
|
||||
std::vector<ClusterIndex> linearization;
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
TestBitSet todo = depgraph.Positions();
|
||||
// In every iteration one topologically-valid transaction is appended to linearization.
|
||||
while (todo.Any()) {
|
||||
@ -253,18 +253,18 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
* sim[i]->first is its individual feerate, and sim[i]->second is its set of ancestors. */
|
||||
std::array<std::optional<std::pair<FeeFrac, TestBitSet>>, TestBitSet::Size()> sim;
|
||||
/** The number of non-nullopt position in sim. */
|
||||
ClusterIndex num_tx_sim{0};
|
||||
DepGraphIndex num_tx_sim{0};
|
||||
|
||||
/** Read a valid index of a transaction from the provider. */
|
||||
auto idx_fn = [&]() {
|
||||
auto offset = provider.ConsumeIntegralInRange<ClusterIndex>(0, num_tx_sim - 1);
|
||||
for (ClusterIndex i = 0; i < sim.size(); ++i) {
|
||||
auto offset = provider.ConsumeIntegralInRange<DepGraphIndex>(0, num_tx_sim - 1);
|
||||
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
||||
if (!sim[i].has_value()) continue;
|
||||
if (offset == 0) return i;
|
||||
--offset;
|
||||
}
|
||||
assert(false);
|
||||
return ClusterIndex(-1);
|
||||
return DepGraphIndex(-1);
|
||||
};
|
||||
|
||||
/** Read a valid subset of the transactions from the provider. */
|
||||
@ -273,7 +273,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
||||
auto mask_shifted = mask;
|
||||
TestBitSet subset;
|
||||
for (ClusterIndex i = 0; i < sim.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
||||
if (!sim[i].has_value()) continue;
|
||||
if (mask_shifted & 1) {
|
||||
subset.Set(i);
|
||||
@ -289,7 +289,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
auto range = (uint64_t{1} << sim.size()) - 1;
|
||||
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
||||
TestBitSet set;
|
||||
for (ClusterIndex i = 0; i < sim.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
||||
if ((mask >> i) & 1) {
|
||||
set.Set(i);
|
||||
}
|
||||
@ -301,7 +301,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
auto anc_update_fn = [&]() {
|
||||
while (true) {
|
||||
bool updates{false};
|
||||
for (ClusterIndex chl = 0; chl < sim.size(); ++chl) {
|
||||
for (DepGraphIndex chl = 0; chl < sim.size(); ++chl) {
|
||||
if (!sim[chl].has_value()) continue;
|
||||
for (auto par : sim[chl]->second) {
|
||||
if (!sim[chl]->second.IsSupersetOf(sim[par]->second)) {
|
||||
@ -315,7 +315,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
};
|
||||
|
||||
/** Compare the state of transaction i in the simulation with the real one. */
|
||||
auto check_fn = [&](ClusterIndex i) {
|
||||
auto check_fn = [&](DepGraphIndex i) {
|
||||
// Compare used positions.
|
||||
assert(real.Positions()[i] == sim[i].has_value());
|
||||
if (sim[i].has_value()) {
|
||||
@ -338,7 +338,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
auto idx = real.AddTransaction(feerate);
|
||||
// Verify that the returned index is correct.
|
||||
assert(!sim[idx].has_value());
|
||||
for (ClusterIndex i = 0; i < TestBitSet::Size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < TestBitSet::Size(); ++i) {
|
||||
if (!sim[i].has_value()) {
|
||||
assert(idx == i);
|
||||
break;
|
||||
@ -351,7 +351,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
}
|
||||
if ((command % 3) <= 1 && num_tx_sim > 0) {
|
||||
// AddDependencies.
|
||||
ClusterIndex child = idx_fn();
|
||||
DepGraphIndex child = idx_fn();
|
||||
auto parents = subset_fn();
|
||||
// Apply to DepGraph.
|
||||
real.AddDependencies(parents, child);
|
||||
@ -370,7 +370,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
// Apply to DepGraph.
|
||||
real.RemoveTransactions(del);
|
||||
// Apply to sim.
|
||||
for (ClusterIndex i = 0; i < sim.size(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
||||
if (sim[i].has_value()) {
|
||||
if (del[i]) {
|
||||
--num_tx_sim;
|
||||
@ -388,7 +388,7 @@ FUZZ_TARGET(clusterlin_depgraph_sim)
|
||||
|
||||
// Compare the real obtained depgraph against the simulation.
|
||||
anc_update_fn();
|
||||
for (ClusterIndex i = 0; i < sim.size(); ++i) check_fn(i);
|
||||
for (DepGraphIndex i = 0; i < sim.size(); ++i) check_fn(i);
|
||||
assert(real.TxCount() == num_tx_sim);
|
||||
// Sanity check the result (which includes round-tripping serialization, if applicable).
|
||||
SanityCheck(real);
|
||||
@ -401,13 +401,42 @@ FUZZ_TARGET(clusterlin_depgraph_serialization)
|
||||
// Construct a graph by deserializing.
|
||||
SpanReader reader(buffer);
|
||||
DepGraph<TestBitSet> depgraph;
|
||||
DepGraphIndex par_code{0}, chl_code{0};
|
||||
try {
|
||||
reader >> Using<DepGraphFormatter>(depgraph);
|
||||
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(par_code) >> VARINT(chl_code);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
SanityCheck(depgraph);
|
||||
|
||||
// Verify the graph is a DAG.
|
||||
assert(IsAcyclic(depgraph));
|
||||
assert(depgraph.IsAcyclic());
|
||||
|
||||
// Introduce a cycle, and then test that IsAcyclic returns false.
|
||||
if (depgraph.TxCount() < 2) return;
|
||||
DepGraphIndex par(0), chl(0);
|
||||
// Pick any transaction of depgraph as parent.
|
||||
par_code %= depgraph.TxCount();
|
||||
for (auto i : depgraph.Positions()) {
|
||||
if (par_code == 0) {
|
||||
par = i;
|
||||
break;
|
||||
}
|
||||
--par_code;
|
||||
}
|
||||
// Pick any ancestor of par (excluding itself) as child, if any.
|
||||
auto ancestors = depgraph.Ancestors(par) - TestBitSet::Singleton(par);
|
||||
if (ancestors.None()) return;
|
||||
chl_code %= ancestors.Count();
|
||||
for (auto i : ancestors) {
|
||||
if (chl_code == 0) {
|
||||
chl = i;
|
||||
break;
|
||||
}
|
||||
--chl_code;
|
||||
}
|
||||
// Add the cycle-introducing dependency.
|
||||
depgraph.AddDependencies(TestBitSet::Singleton(par), chl);
|
||||
// Check that we now detect a cycle.
|
||||
assert(!depgraph.IsAcyclic());
|
||||
}
|
||||
|
||||
FUZZ_TARGET(clusterlin_components)
|
||||
@ -469,7 +498,7 @@ FUZZ_TARGET(clusterlin_components)
|
||||
reader >> VARINT(subset_bits);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
TestBitSet subset;
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
if (todo[i]) {
|
||||
if (subset_bits & 1) subset.Set(i);
|
||||
subset_bits >>= 1;
|
||||
@ -526,7 +555,7 @@ FUZZ_TARGET(clusterlin_chunking)
|
||||
for (const auto& chunk_feerate : chunking) {
|
||||
assert(todo.Any());
|
||||
SetInfo<TestBitSet> accumulator, best;
|
||||
for (ClusterIndex idx : linearization) {
|
||||
for (DepGraphIndex idx : linearization) {
|
||||
if (todo[idx]) {
|
||||
accumulator.Set(depgraph, idx);
|
||||
if (best.feerate.IsEmpty() || accumulator.feerate >> best.feerate) {
|
||||
@ -737,7 +766,7 @@ FUZZ_TARGET(clusterlin_linearization_chunking)
|
||||
assert(chunking.NumChunksLeft() > 0);
|
||||
|
||||
// Construct linearization with just todo.
|
||||
std::vector<ClusterIndex> linearization_left;
|
||||
std::vector<DepGraphIndex> linearization_left;
|
||||
for (auto i : linearization) {
|
||||
if (todo[i]) linearization_left.push_back(i);
|
||||
}
|
||||
@ -747,13 +776,13 @@ FUZZ_TARGET(clusterlin_linearization_chunking)
|
||||
|
||||
// Verify that it matches the feerates of the chunks of chunking.
|
||||
assert(chunking.NumChunksLeft() == chunking_left.size());
|
||||
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
assert(chunking.GetChunk(i).feerate == chunking_left[i]);
|
||||
}
|
||||
|
||||
// Check consistency of chunking.
|
||||
TestBitSet combined;
|
||||
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
const auto& chunk_info = chunking.GetChunk(i);
|
||||
// Chunks must be non-empty.
|
||||
assert(chunk_info.transactions.Any());
|
||||
@ -804,7 +833,7 @@ FUZZ_TARGET(clusterlin_linearization_chunking)
|
||||
// - No non-empty intersection between the intersection and a prefix of the chunks of the
|
||||
// remainder of the linearization may be better than the intersection.
|
||||
TestBitSet prefix;
|
||||
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
||||
prefix |= chunking.GetChunk(i).transactions;
|
||||
auto reintersect = SetInfo(depgraph, prefix & intersect.transactions);
|
||||
if (!reintersect.feerate.IsEmpty()) {
|
||||
@ -846,7 +875,7 @@ FUZZ_TARGET(clusterlin_linearize)
|
||||
if (make_connected) MakeConnected(depgraph);
|
||||
|
||||
// Optionally construct an old linearization for it.
|
||||
std::vector<ClusterIndex> old_linearization;
|
||||
std::vector<DepGraphIndex> old_linearization;
|
||||
{
|
||||
uint8_t have_old_linearization{0};
|
||||
try {
|
||||
@ -905,8 +934,8 @@ FUZZ_TARGET(clusterlin_linearize)
|
||||
|
||||
// Only for very small clusters, test every topologically-valid permutation.
|
||||
if (depgraph.TxCount() <= 7) {
|
||||
std::vector<ClusterIndex> perm_linearization;
|
||||
for (ClusterIndex i : depgraph.Positions()) perm_linearization.push_back(i);
|
||||
std::vector<DepGraphIndex> perm_linearization;
|
||||
for (DepGraphIndex i : depgraph.Positions()) perm_linearization.push_back(i);
|
||||
// Iterate over all valid permutations.
|
||||
do {
|
||||
// Determine whether perm_linearization is topological.
|
||||
@ -942,7 +971,7 @@ FUZZ_TARGET(clusterlin_postlinearize)
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
|
||||
// Retrieve a linearization from the fuzz input.
|
||||
std::vector<ClusterIndex> linearization;
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
linearization = ReadLinearization(depgraph, reader);
|
||||
SanityCheck(depgraph, linearization);
|
||||
|
||||
@ -990,7 +1019,7 @@ FUZZ_TARGET(clusterlin_postlinearize_tree)
|
||||
// Now construct a new graph, copying the nodes, but leaving only the first parent (even
|
||||
// direction) or the first child (odd direction).
|
||||
DepGraph<TestBitSet> depgraph_tree;
|
||||
for (ClusterIndex i = 0; i < depgraph_gen.PositionRange(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < depgraph_gen.PositionRange(); ++i) {
|
||||
if (depgraph_gen.Positions()[i]) {
|
||||
depgraph_tree.AddTransaction(depgraph_gen.FeeRate(i));
|
||||
} else {
|
||||
@ -1002,14 +1031,14 @@ FUZZ_TARGET(clusterlin_postlinearize_tree)
|
||||
depgraph_tree.RemoveTransactions(TestBitSet::Fill(depgraph_gen.PositionRange()) - depgraph_gen.Positions());
|
||||
|
||||
if (direction & 1) {
|
||||
for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
||||
auto children = depgraph_gen.GetReducedChildren(i);
|
||||
if (children.Any()) {
|
||||
depgraph_tree.AddDependencies(TestBitSet::Singleton(i), children.First());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
||||
for (DepGraphIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
||||
auto parents = depgraph_gen.GetReducedParents(i);
|
||||
if (parents.Any()) {
|
||||
depgraph_tree.AddDependencies(TestBitSet::Singleton(parents.First()), i);
|
||||
@ -1018,7 +1047,7 @@ FUZZ_TARGET(clusterlin_postlinearize_tree)
|
||||
}
|
||||
|
||||
// Retrieve a linearization from the fuzz input.
|
||||
std::vector<ClusterIndex> linearization;
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
linearization = ReadLinearization(depgraph_tree, reader);
|
||||
SanityCheck(depgraph_tree, linearization);
|
||||
|
||||
@ -1075,7 +1104,7 @@ FUZZ_TARGET(clusterlin_postlinearize_moved_leaf)
|
||||
|
||||
// Construct a linearization identical to lin, but with the tail end of lin_leaf moved to the
|
||||
// back.
|
||||
std::vector<ClusterIndex> lin_moved;
|
||||
std::vector<DepGraphIndex> lin_moved;
|
||||
for (auto i : lin) {
|
||||
if (i != lin_leaf.back()) lin_moved.push_back(i);
|
||||
}
|
||||
@ -1118,3 +1147,65 @@ FUZZ_TARGET(clusterlin_merge)
|
||||
auto cmp2 = CompareChunks(chunking_merged, chunking2);
|
||||
assert(cmp2 >= 0);
|
||||
}
|
||||
|
||||
FUZZ_TARGET(clusterlin_fix_linearization)
|
||||
{
|
||||
// Verify expected properties of FixLinearization() on arbitrary linearizations.
|
||||
|
||||
// Retrieve a depgraph from the fuzz input.
|
||||
SpanReader reader(buffer);
|
||||
DepGraph<TestBitSet> depgraph;
|
||||
try {
|
||||
reader >> Using<DepGraphFormatter>(depgraph);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
|
||||
// Construct an arbitrary linearization (not necessarily topological for depgraph).
|
||||
std::vector<DepGraphIndex> linearization;
|
||||
/** Which transactions of depgraph are yet to be included in linearization. */
|
||||
TestBitSet todo = depgraph.Positions();
|
||||
while (todo.Any()) {
|
||||
// Read a number from the fuzz input in range [0, todo.Count()).
|
||||
uint64_t val{0};
|
||||
try {
|
||||
reader >> VARINT(val);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
val %= todo.Count();
|
||||
// Find the val'th element in todo, remove it from todo, and append it to linearization.
|
||||
for (auto idx : todo) {
|
||||
if (val == 0) {
|
||||
linearization.push_back(idx);
|
||||
todo.Reset(idx);
|
||||
break;
|
||||
}
|
||||
--val;
|
||||
}
|
||||
}
|
||||
assert(linearization.size() == depgraph.TxCount());
|
||||
|
||||
// Determine what prefix of linearization is topological, i.e., the position of the first entry
|
||||
// in linearization which corresponds to a transaction that is not preceded by all its
|
||||
// ancestors.
|
||||
size_t topo_prefix = 0;
|
||||
todo = depgraph.Positions();
|
||||
while (topo_prefix < linearization.size()) {
|
||||
DepGraphIndex idx = linearization[topo_prefix];
|
||||
todo.Reset(idx);
|
||||
if (todo.Overlaps(depgraph.Ancestors(idx))) break;
|
||||
++topo_prefix;
|
||||
}
|
||||
|
||||
// Then make a fixed copy of linearization.
|
||||
auto linearization_fixed = linearization;
|
||||
FixLinearization(depgraph, linearization_fixed);
|
||||
// Sanity check it (which includes testing whether it is topological).
|
||||
SanityCheck(depgraph, linearization_fixed);
|
||||
|
||||
// FixLinearization does not modify the topological prefix of linearization.
|
||||
assert(std::equal(linearization.begin(), linearization.begin() + topo_prefix,
|
||||
linearization_fixed.begin()));
|
||||
// This also means that if linearization was entirely topological, FixLinearization cannot have
|
||||
// modified it. This is implied by the assertion above already, but repeat it explicitly.
|
||||
if (topo_prefix == linearization.size()) {
|
||||
assert(linearization == linearization_fixed);
|
||||
}
|
||||
}
|
||||
|
993
src/test/fuzz/txgraph.cpp
Normal file
993
src/test/fuzz/txgraph.cpp
Normal file
@ -0,0 +1,993 @@
|
||||
// Copyright (c) The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <txgraph.h>
|
||||
#include <cluster_linearize.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/util/random.h>
|
||||
#include <util/bitset.h>
|
||||
#include <util/feefrac.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <stdint.h>
|
||||
#include <utility>
|
||||
|
||||
using namespace cluster_linearize;
|
||||
|
||||
namespace {
|
||||
|
||||
/** Data type representing a naive simulated TxGraph, keeping all transactions (even from
|
||||
* disconnected components) in a single DepGraph. Unlike the real TxGraph, this only models
|
||||
* a single graph, and multiple instances are used to simulate main/staging. */
|
||||
struct SimTxGraph
|
||||
{
|
||||
/** Maximum number of transactions to support simultaneously. Set this higher than txgraph's
|
||||
* cluster count, so we can exercise situations with more transactions than fit in one
|
||||
* cluster. */
|
||||
static constexpr unsigned MAX_TRANSACTIONS = MAX_CLUSTER_COUNT_LIMIT * 2;
|
||||
/** Set type to use in the simulation. */
|
||||
using SetType = BitSet<MAX_TRANSACTIONS>;
|
||||
/** Data type for representing positions within SimTxGraph::graph. */
|
||||
using Pos = DepGraphIndex;
|
||||
/** Constant to mean "missing in this graph". */
|
||||
static constexpr auto MISSING = Pos(-1);
|
||||
|
||||
/** The dependency graph (for all transactions in the simulation, regardless of
|
||||
* connectivity/clustering). */
|
||||
DepGraph<SetType> graph;
|
||||
/** For each position in graph, which TxGraph::Ref it corresponds with (if any). Use shared_ptr
|
||||
* so that a SimTxGraph can be copied to create a staging one, while sharing Refs with
|
||||
* the main graph. */
|
||||
std::array<std::shared_ptr<TxGraph::Ref>, MAX_TRANSACTIONS> simmap;
|
||||
/** For each TxGraph::Ref in graph, the position it corresponds with. */
|
||||
std::map<const TxGraph::Ref*, Pos> simrevmap;
|
||||
/** The set of TxGraph::Ref entries that have been removed, but not yet destroyed. */
|
||||
std::vector<std::shared_ptr<TxGraph::Ref>> removed;
|
||||
/** Whether the graph is oversized (true = yes, false = no, std::nullopt = unknown). */
|
||||
std::optional<bool> oversized;
|
||||
/** The configured maximum number of transactions per cluster. */
|
||||
DepGraphIndex max_cluster_count;
|
||||
/** The configured maximum total size of transactions per cluster. */
|
||||
uint64_t max_cluster_size;
|
||||
|
||||
/** Construct a new SimTxGraph with the specified maximum cluster count. */
|
||||
explicit SimTxGraph(DepGraphIndex max_cluster, uint64_t max_size) :
|
||||
max_cluster_count(max_cluster), max_cluster_size(max_size) {}
|
||||
|
||||
// Permit copying and moving.
|
||||
SimTxGraph(const SimTxGraph&) noexcept = default;
|
||||
SimTxGraph& operator=(const SimTxGraph&) noexcept = default;
|
||||
SimTxGraph(SimTxGraph&&) noexcept = default;
|
||||
SimTxGraph& operator=(SimTxGraph&&) noexcept = default;
|
||||
|
||||
/** Check whether this graph is oversized (contains a connected component whose number of
|
||||
* transactions exceeds max_cluster_count. */
|
||||
bool IsOversized()
|
||||
{
|
||||
if (!oversized.has_value()) {
|
||||
// Only recompute when oversized isn't already known.
|
||||
oversized = false;
|
||||
auto todo = graph.Positions();
|
||||
// Iterate over all connected components of the graph.
|
||||
while (todo.Any()) {
|
||||
auto component = graph.FindConnectedComponent(todo);
|
||||
if (component.Count() > max_cluster_count) oversized = true;
|
||||
uint64_t component_size{0};
|
||||
for (auto i : component) component_size += graph.FeeRate(i).size;
|
||||
if (component_size > max_cluster_size) oversized = true;
|
||||
todo -= component;
|
||||
}
|
||||
}
|
||||
return *oversized;
|
||||
}
|
||||
|
||||
/** Determine the number of (non-removed) transactions in the graph. */
|
||||
DepGraphIndex GetTransactionCount() const { return graph.TxCount(); }
|
||||
|
||||
/** Get the sum of all fees/sizes in the graph. */
|
||||
FeePerWeight SumAll() const
|
||||
{
|
||||
FeePerWeight ret;
|
||||
for (auto i : graph.Positions()) {
|
||||
ret += graph.FeeRate(i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Get the position where ref occurs in this simulated graph, or -1 if it does not. */
|
||||
Pos Find(const TxGraph::Ref* ref) const
|
||||
{
|
||||
auto it = simrevmap.find(ref);
|
||||
if (it != simrevmap.end()) return it->second;
|
||||
return MISSING;
|
||||
}
|
||||
|
||||
/** Given a position in this simulated graph, get the corresponding TxGraph::Ref. */
|
||||
TxGraph::Ref* GetRef(Pos pos)
|
||||
{
|
||||
assert(graph.Positions()[pos]);
|
||||
assert(simmap[pos]);
|
||||
return simmap[pos].get();
|
||||
}
|
||||
|
||||
/** Add a new transaction to the simulation. */
|
||||
TxGraph::Ref* AddTransaction(const FeePerWeight& feerate)
|
||||
{
|
||||
assert(graph.TxCount() < MAX_TRANSACTIONS);
|
||||
auto simpos = graph.AddTransaction(feerate);
|
||||
assert(graph.Positions()[simpos]);
|
||||
simmap[simpos] = std::make_shared<TxGraph::Ref>();
|
||||
auto ptr = simmap[simpos].get();
|
||||
simrevmap[ptr] = simpos;
|
||||
// This may invalidate our cached oversized value.
|
||||
if (oversized.has_value() && !*oversized) oversized = std::nullopt;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/** Add a dependency between two positions in this graph. */
|
||||
void AddDependency(TxGraph::Ref* parent, TxGraph::Ref* child)
|
||||
{
|
||||
auto par_pos = Find(parent);
|
||||
if (par_pos == MISSING) return;
|
||||
auto chl_pos = Find(child);
|
||||
if (chl_pos == MISSING) return;
|
||||
graph.AddDependencies(SetType::Singleton(par_pos), chl_pos);
|
||||
// This may invalidate our cached oversized value.
|
||||
if (oversized.has_value() && !*oversized) oversized = std::nullopt;
|
||||
}
|
||||
|
||||
/** Modify the transaction fee of a ref, if it exists. */
|
||||
void SetTransactionFee(TxGraph::Ref* ref, int64_t fee)
|
||||
{
|
||||
auto pos = Find(ref);
|
||||
if (pos == MISSING) return;
|
||||
graph.FeeRate(pos).fee = fee;
|
||||
}
|
||||
|
||||
/** Remove the transaction in the specified position from the graph. */
|
||||
void RemoveTransaction(TxGraph::Ref* ref)
|
||||
{
|
||||
auto pos = Find(ref);
|
||||
if (pos == MISSING) return;
|
||||
graph.RemoveTransactions(SetType::Singleton(pos));
|
||||
simrevmap.erase(simmap[pos].get());
|
||||
// Retain the TxGraph::Ref corresponding to this position, so the Ref destruction isn't
|
||||
// invoked until the simulation explicitly decided to do so.
|
||||
removed.push_back(std::move(simmap[pos]));
|
||||
simmap[pos].reset();
|
||||
// This may invalidate our cached oversized value.
|
||||
if (oversized.has_value() && *oversized) oversized = std::nullopt;
|
||||
}
|
||||
|
||||
/** Destroy the transaction from the graph, including from the removed set. This will
|
||||
* trigger TxGraph::Ref::~Ref. reset_oversize controls whether the cached oversized
|
||||
* value is cleared (destroying does not clear oversizedness in TxGraph of the main
|
||||
* graph while staging exists). */
|
||||
void DestroyTransaction(TxGraph::Ref* ref, bool reset_oversize)
|
||||
{
|
||||
auto pos = Find(ref);
|
||||
if (pos == MISSING) {
|
||||
// Wipe the ref, if it exists, from the removed vector. Use std::partition rather
|
||||
// than std::erase because we don't care about the order of the entries that
|
||||
// remain.
|
||||
auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != ref; });
|
||||
removed.erase(remove, removed.end());
|
||||
} else {
|
||||
graph.RemoveTransactions(SetType::Singleton(pos));
|
||||
simrevmap.erase(simmap[pos].get());
|
||||
simmap[pos].reset();
|
||||
// This may invalidate our cached oversized value.
|
||||
if (reset_oversize && oversized.has_value() && *oversized) {
|
||||
oversized = std::nullopt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Construct the set with all positions in this graph corresponding to the specified
|
||||
* TxGraph::Refs. All of them must occur in this graph and not be removed. */
|
||||
SetType MakeSet(std::span<TxGraph::Ref* const> arg)
|
||||
{
|
||||
SetType ret;
|
||||
for (TxGraph::Ref* ptr : arg) {
|
||||
auto pos = Find(ptr);
|
||||
assert(pos != Pos(-1));
|
||||
ret.Set(pos);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Get the set of ancestors (desc=false) or descendants (desc=true) in this graph. */
|
||||
SetType GetAncDesc(TxGraph::Ref* arg, bool desc)
|
||||
{
|
||||
auto pos = Find(arg);
|
||||
if (pos == MISSING) return {};
|
||||
return desc ? graph.Descendants(pos) : graph.Ancestors(pos);
|
||||
}
|
||||
|
||||
/** Given a set of Refs (given as a vector of pointers), expand the set to include all its
|
||||
* ancestors (desc=false) or all its descendants (desc=true) in this graph. */
|
||||
void IncludeAncDesc(std::vector<TxGraph::Ref*>& arg, bool desc)
|
||||
{
|
||||
std::vector<TxGraph::Ref*> ret;
|
||||
for (auto ptr : arg) {
|
||||
auto simpos = Find(ptr);
|
||||
if (simpos != MISSING) {
|
||||
for (auto i : desc ? graph.Descendants(simpos) : graph.Ancestors(simpos)) {
|
||||
ret.push_back(simmap[i].get());
|
||||
}
|
||||
} else {
|
||||
ret.push_back(ptr);
|
||||
}
|
||||
}
|
||||
// Deduplicate.
|
||||
std::sort(ret.begin(), ret.end());
|
||||
ret.erase(std::unique(ret.begin(), ret.end()), ret.end());
|
||||
// Replace input.
|
||||
arg = std::move(ret);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
FUZZ_TARGET(txgraph)
|
||||
{
|
||||
// This is a big simulation test for TxGraph, which performs a fuzz-derived sequence of valid
|
||||
// operations on a TxGraph instance, as well as on a simpler (mostly) reimplementation (see
|
||||
// SimTxGraph above), comparing the outcome of functions that return a result, and finally
|
||||
// performing a full comparison between the two.
|
||||
|
||||
SeedRandomStateForTest(SeedRand::ZEROS);
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
|
||||
/** Internal test RNG, used only for decisions which would require significant amount of data
|
||||
* to be read from the provider, without realistically impacting test sensitivity. */
|
||||
InsecureRandomContext rng(0xdecade2009added + buffer.size());
|
||||
|
||||
/** Variable used whenever an empty TxGraph::Ref is needed. */
|
||||
TxGraph::Ref empty_ref;
|
||||
|
||||
// Decide the maximum number of transactions per cluster we will use in this simulation.
|
||||
auto max_count = provider.ConsumeIntegralInRange<DepGraphIndex>(1, MAX_CLUSTER_COUNT_LIMIT);
|
||||
// And the maximum combined size of transactions per cluster.
|
||||
auto max_size = provider.ConsumeIntegralInRange<uint64_t>(1, 0x3fffff * MAX_CLUSTER_COUNT_LIMIT);
|
||||
|
||||
// Construct a real graph, and a vector of simulated graphs (main, and possibly staging).
|
||||
auto real = MakeTxGraph(max_count, max_size);
|
||||
std::vector<SimTxGraph> sims;
|
||||
sims.reserve(2);
|
||||
sims.emplace_back(max_count, max_size);
|
||||
|
||||
/** Struct encapsulating information about a BlockBuilder that's currently live. */
|
||||
struct BlockBuilderData
|
||||
{
|
||||
/** BlockBuilder object from real. */
|
||||
std::unique_ptr<TxGraph::BlockBuilder> builder;
|
||||
/** The set of transactions marked as included in *builder. */
|
||||
SimTxGraph::SetType done;
|
||||
/** The last chunk feerate returned by *builder. IsEmpty() if none yet. */
|
||||
FeePerWeight last_feerate;
|
||||
|
||||
BlockBuilderData(std::unique_ptr<TxGraph::BlockBuilder> builder_in) : builder(std::move(builder_in)) {}
|
||||
};
|
||||
|
||||
/** Currently active block builders. */
|
||||
std::vector<BlockBuilderData> block_builders;
|
||||
|
||||
/** Function to pick any Ref (for either sim in sims: from sim.simmap or sim.removed, or the
|
||||
* empty Ref). */
|
||||
auto pick_fn = [&]() noexcept -> TxGraph::Ref* {
|
||||
size_t tx_count[2] = {sims[0].GetTransactionCount(), 0};
|
||||
/** The number of possible choices. */
|
||||
size_t choices = tx_count[0] + sims[0].removed.size() + 1;
|
||||
if (sims.size() == 2) {
|
||||
tx_count[1] = sims[1].GetTransactionCount();
|
||||
choices += tx_count[1] + sims[1].removed.size();
|
||||
}
|
||||
/** Pick one of them. */
|
||||
auto choice = provider.ConsumeIntegralInRange<size_t>(0, choices - 1);
|
||||
// Consider both main and (if it exists) staging.
|
||||
for (size_t level = 0; level < sims.size(); ++level) {
|
||||
auto& sim = sims[level];
|
||||
if (choice < tx_count[level]) {
|
||||
// Return from graph.
|
||||
for (auto i : sim.graph.Positions()) {
|
||||
if (choice == 0) return sim.GetRef(i);
|
||||
--choice;
|
||||
}
|
||||
assert(false);
|
||||
} else {
|
||||
choice -= tx_count[level];
|
||||
}
|
||||
if (choice < sim.removed.size()) {
|
||||
// Return from removed.
|
||||
return sim.removed[choice].get();
|
||||
} else {
|
||||
choice -= sim.removed.size();
|
||||
}
|
||||
}
|
||||
// Return empty.
|
||||
assert(choice == 0);
|
||||
return &empty_ref;
|
||||
};
|
||||
|
||||
/** Function to construct the full diagram for a simulated graph. This works by fetching the
|
||||
* clusters and chunking them manually, so it works for both main and staging
|
||||
* (GetMainChunkFeerate only works for main). */
|
||||
auto get_diagram_fn = [&](bool main_only) -> std::vector<FeeFrac> {
|
||||
int level = main_only ? 0 : sims.size() - 1;
|
||||
auto& sim = sims[level];
|
||||
// For every transaction in the graph, request its cluster, and throw them into a set.
|
||||
std::set<std::vector<TxGraph::Ref*>> clusters;
|
||||
for (auto i : sim.graph.Positions()) {
|
||||
auto ref = sim.GetRef(i);
|
||||
clusters.insert(real->GetCluster(*ref, main_only));
|
||||
}
|
||||
// Compute the chunkings of each (deduplicated) cluster.
|
||||
size_t num_tx{0};
|
||||
std::vector<FeeFrac> ret;
|
||||
for (const auto& cluster : clusters) {
|
||||
num_tx += cluster.size();
|
||||
std::vector<SimTxGraph::Pos> linearization;
|
||||
linearization.reserve(cluster.size());
|
||||
for (auto refptr : cluster) linearization.push_back(sim.Find(refptr));
|
||||
for (const FeeFrac& chunk_feerate : ChunkLinearization(sim.graph, linearization)) {
|
||||
ret.push_back(chunk_feerate);
|
||||
}
|
||||
}
|
||||
// Verify the number of transactions after deduplicating clusters. This implicitly verifies
|
||||
// that GetCluster on each element of a cluster reports the cluster transactions in the same
|
||||
// order.
|
||||
assert(num_tx == sim.GetTransactionCount());
|
||||
// Sort by feerate (we don't care about respecting ordering within clusters, as these are
|
||||
// just feerates).
|
||||
std::sort(ret.begin(), ret.end(), std::greater{});
|
||||
return ret;
|
||||
};
|
||||
|
||||
LIMITED_WHILE(provider.remaining_bytes() > 0, 200) {
|
||||
// Read a one-byte command.
|
||||
int command = provider.ConsumeIntegral<uint8_t>();
|
||||
|
||||
/** Use the bottom 2 bits of command to select an entry in the block_builders vector (if
|
||||
* any). */
|
||||
int builder_idx = block_builders.empty() ? -1 : int((command & 3) % block_builders.size());
|
||||
|
||||
// Treat the lowest bit of a command as a flag (which selects a variant of some of the
|
||||
// operations), and the second-lowest bit as a way of selecting main vs. staging, and leave
|
||||
// the rest of the bits in command.
|
||||
bool alt = command & 1;
|
||||
bool use_main = command & 2;
|
||||
command >>= 2;
|
||||
|
||||
// Provide convenient aliases for the top simulated graph (main, or staging if it exists),
|
||||
// one for the simulated graph selected based on use_main (for operations that can operate
|
||||
// on both graphs), and one that always refers to the main graph.
|
||||
auto& top_sim = sims.back();
|
||||
auto& sel_sim = use_main ? sims[0] : top_sim;
|
||||
auto& main_sim = sims[0];
|
||||
|
||||
// Keep decrementing command for each applicable operation, until one is hit. Multiple
|
||||
// iterations may be necessary.
|
||||
while (true) {
|
||||
if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) {
|
||||
// AddTransaction.
|
||||
int64_t fee;
|
||||
int32_t size;
|
||||
if (alt) {
|
||||
// If alt is true, pick fee and size from the entire range.
|
||||
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
||||
size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
|
||||
} else {
|
||||
// Otherwise, use smaller range which consume fewer fuzz input bytes, as just
|
||||
// these are likely sufficient to trigger all interesting code paths already.
|
||||
fee = provider.ConsumeIntegral<uint8_t>();
|
||||
size = provider.ConsumeIntegralInRange<uint32_t>(1, 0xff);
|
||||
}
|
||||
FeePerWeight feerate{fee, size};
|
||||
// Create a real TxGraph::Ref.
|
||||
auto ref = real->AddTransaction(feerate);
|
||||
// Create a shared_ptr place in the simulation to put the Ref in.
|
||||
auto ref_loc = top_sim.AddTransaction(feerate);
|
||||
// Move it in place.
|
||||
*ref_loc = std::move(ref);
|
||||
break;
|
||||
} else if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) {
|
||||
// AddDependency.
|
||||
auto par = pick_fn();
|
||||
auto chl = pick_fn();
|
||||
auto pos_par = top_sim.Find(par);
|
||||
auto pos_chl = top_sim.Find(chl);
|
||||
if (pos_par != SimTxGraph::MISSING && pos_chl != SimTxGraph::MISSING) {
|
||||
// Determine if adding this would introduce a cycle (not allowed by TxGraph),
|
||||
// and if so, skip.
|
||||
if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break;
|
||||
}
|
||||
top_sim.AddDependency(par, chl);
|
||||
real->AddDependency(*par, *chl);
|
||||
break;
|
||||
} else if ((block_builders.empty() || sims.size() > 1) && top_sim.removed.size() < 100 && command-- == 0) {
|
||||
// RemoveTransaction. Either all its ancestors or all its descendants are also
|
||||
// removed (if any), to make sure TxGraph's reordering of removals and dependencies
|
||||
// has no effect.
|
||||
std::vector<TxGraph::Ref*> to_remove;
|
||||
to_remove.push_back(pick_fn());
|
||||
top_sim.IncludeAncDesc(to_remove, alt);
|
||||
// The order in which these ancestors/descendants are removed should not matter;
|
||||
// randomly shuffle them.
|
||||
std::shuffle(to_remove.begin(), to_remove.end(), rng);
|
||||
for (TxGraph::Ref* ptr : to_remove) {
|
||||
real->RemoveTransaction(*ptr);
|
||||
top_sim.RemoveTransaction(ptr);
|
||||
}
|
||||
break;
|
||||
} else if (sel_sim.removed.size() > 0 && command-- == 0) {
|
||||
// ~Ref (of an already-removed transaction). Destroying a TxGraph::Ref has an
|
||||
// observable effect on the TxGraph it refers to, so this simulation permits doing
|
||||
// so separately from other actions on TxGraph.
|
||||
|
||||
// Pick a Ref of sel_sim.removed to destroy. Note that the same Ref may still occur
|
||||
// in the other graph, and thus not actually trigger ~Ref yet (which is exactly
|
||||
// what we want, as destroying Refs is only allowed when it does not refer to an
|
||||
// existing transaction in either graph).
|
||||
auto removed_pos = provider.ConsumeIntegralInRange<size_t>(0, sel_sim.removed.size() - 1);
|
||||
if (removed_pos != sel_sim.removed.size() - 1) {
|
||||
std::swap(sel_sim.removed[removed_pos], sel_sim.removed.back());
|
||||
}
|
||||
sel_sim.removed.pop_back();
|
||||
break;
|
||||
} else if (block_builders.empty() && command-- == 0) {
|
||||
// ~Ref (of any transaction).
|
||||
std::vector<TxGraph::Ref*> to_destroy;
|
||||
to_destroy.push_back(pick_fn());
|
||||
while (true) {
|
||||
// Keep adding either the ancestors or descendants the already picked
|
||||
// transactions have in both graphs (main and staging) combined. Destroying
|
||||
// will trigger deletions in both, so to have consistent TxGraph behavior, the
|
||||
// set must be closed under ancestors, or descendants, in both graphs.
|
||||
auto old_size = to_destroy.size();
|
||||
for (auto& sim : sims) sim.IncludeAncDesc(to_destroy, alt);
|
||||
if (to_destroy.size() == old_size) break;
|
||||
}
|
||||
// The order in which these ancestors/descendants are destroyed should not matter;
|
||||
// randomly shuffle them.
|
||||
std::shuffle(to_destroy.begin(), to_destroy.end(), rng);
|
||||
for (TxGraph::Ref* ptr : to_destroy) {
|
||||
for (size_t level = 0; level < sims.size(); ++level) {
|
||||
sims[level].DestroyTransaction(ptr, level == sims.size() - 1);
|
||||
}
|
||||
}
|
||||
break;
|
||||
} else if (block_builders.empty() && command-- == 0) {
|
||||
// SetTransactionFee.
|
||||
int64_t fee;
|
||||
if (alt) {
|
||||
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
||||
} else {
|
||||
fee = provider.ConsumeIntegral<uint8_t>();
|
||||
}
|
||||
auto ref = pick_fn();
|
||||
real->SetTransactionFee(*ref, fee);
|
||||
for (auto& sim : sims) {
|
||||
sim.SetTransactionFee(ref, fee);
|
||||
}
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// GetTransactionCount.
|
||||
assert(real->GetTransactionCount(use_main) == sel_sim.GetTransactionCount());
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// Exists.
|
||||
auto ref = pick_fn();
|
||||
bool exists = real->Exists(*ref, use_main);
|
||||
bool should_exist = sel_sim.Find(ref) != SimTxGraph::MISSING;
|
||||
assert(exists == should_exist);
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// IsOversized.
|
||||
assert(sel_sim.IsOversized() == real->IsOversized(use_main));
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// GetIndividualFeerate.
|
||||
auto ref = pick_fn();
|
||||
auto feerate = real->GetIndividualFeerate(*ref);
|
||||
bool found{false};
|
||||
for (auto& sim : sims) {
|
||||
auto simpos = sim.Find(ref);
|
||||
if (simpos != SimTxGraph::MISSING) {
|
||||
found = true;
|
||||
assert(feerate == sim.graph.FeeRate(simpos));
|
||||
}
|
||||
}
|
||||
if (!found) assert(feerate.IsEmpty());
|
||||
break;
|
||||
} else if (!main_sim.IsOversized() && command-- == 0) {
|
||||
// GetMainChunkFeerate.
|
||||
auto ref = pick_fn();
|
||||
auto feerate = real->GetMainChunkFeerate(*ref);
|
||||
auto simpos = main_sim.Find(ref);
|
||||
if (simpos == SimTxGraph::MISSING) {
|
||||
assert(feerate.IsEmpty());
|
||||
} else {
|
||||
// Just do some quick checks that the reported value is in range. A full
|
||||
// recomputation of expected chunk feerates is done at the end.
|
||||
assert(feerate.size >= main_sim.graph.FeeRate(simpos).size);
|
||||
assert(feerate.size <= main_sim.SumAll().size);
|
||||
}
|
||||
break;
|
||||
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
||||
// GetAncestors/GetDescendants.
|
||||
auto ref = pick_fn();
|
||||
auto result = alt ? real->GetDescendants(*ref, use_main)
|
||||
: real->GetAncestors(*ref, use_main);
|
||||
assert(result.size() <= max_count);
|
||||
auto result_set = sel_sim.MakeSet(result);
|
||||
assert(result.size() == result_set.Count());
|
||||
auto expect_set = sel_sim.GetAncDesc(ref, alt);
|
||||
assert(result_set == expect_set);
|
||||
break;
|
||||
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
||||
// GetAncestorsUnion/GetDescendantsUnion.
|
||||
std::vector<TxGraph::Ref*> refs;
|
||||
// Gather a list of up to 15 Ref pointers.
|
||||
auto count = provider.ConsumeIntegralInRange<size_t>(0, 15);
|
||||
refs.resize(count);
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
refs[i] = pick_fn();
|
||||
}
|
||||
// Their order should not matter, shuffle them.
|
||||
std::shuffle(refs.begin(), refs.end(), rng);
|
||||
// Invoke the real function, and convert to SimPos set.
|
||||
auto result = alt ? real->GetDescendantsUnion(refs, use_main)
|
||||
: real->GetAncestorsUnion(refs, use_main);
|
||||
auto result_set = sel_sim.MakeSet(result);
|
||||
assert(result.size() == result_set.Count());
|
||||
// Compute the expected result.
|
||||
SimTxGraph::SetType expect_set;
|
||||
for (TxGraph::Ref* ref : refs) expect_set |= sel_sim.GetAncDesc(ref, alt);
|
||||
// Compare.
|
||||
assert(result_set == expect_set);
|
||||
break;
|
||||
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
||||
// GetCluster.
|
||||
auto ref = pick_fn();
|
||||
auto result = real->GetCluster(*ref, use_main);
|
||||
// Check cluster count limit.
|
||||
assert(result.size() <= max_count);
|
||||
// Require the result to be topologically valid and not contain duplicates.
|
||||
auto left = sel_sim.graph.Positions();
|
||||
uint64_t total_size{0};
|
||||
for (auto refptr : result) {
|
||||
auto simpos = sel_sim.Find(refptr);
|
||||
total_size += sel_sim.graph.FeeRate(simpos).size;
|
||||
assert(simpos != SimTxGraph::MISSING);
|
||||
assert(left[simpos]);
|
||||
left.Reset(simpos);
|
||||
assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left));
|
||||
}
|
||||
// Check cluster size limit.
|
||||
assert(total_size <= max_size);
|
||||
// Require the set to be connected.
|
||||
auto result_set = sel_sim.MakeSet(result);
|
||||
assert(sel_sim.graph.IsConnected(result_set));
|
||||
// If ref exists, the result must contain it. If not, it must be empty.
|
||||
auto simpos = sel_sim.Find(ref);
|
||||
if (simpos != SimTxGraph::MISSING) {
|
||||
assert(result_set[simpos]);
|
||||
} else {
|
||||
assert(result_set.None());
|
||||
}
|
||||
// Require the set not to have ancestors or descendants outside of it.
|
||||
for (auto i : result_set) {
|
||||
assert(sel_sim.graph.Ancestors(i).IsSubsetOf(result_set));
|
||||
assert(sel_sim.graph.Descendants(i).IsSubsetOf(result_set));
|
||||
}
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// HaveStaging.
|
||||
assert((sims.size() == 2) == real->HaveStaging());
|
||||
break;
|
||||
} else if (sims.size() < 2 && command-- == 0) {
|
||||
// StartStaging.
|
||||
sims.emplace_back(sims.back());
|
||||
real->StartStaging();
|
||||
break;
|
||||
} else if (block_builders.empty() && sims.size() > 1 && command-- == 0) {
|
||||
// CommitStaging.
|
||||
real->CommitStaging();
|
||||
sims.erase(sims.begin());
|
||||
break;
|
||||
} else if (sims.size() > 1 && command-- == 0) {
|
||||
// AbortStaging.
|
||||
real->AbortStaging();
|
||||
sims.pop_back();
|
||||
// Reset the cached oversized value (if TxGraph::Ref destructions triggered
|
||||
// removals of main transactions while staging was active, then aborting will
|
||||
// cause it to be re-evaluated in TxGraph).
|
||||
sims.back().oversized = std::nullopt;
|
||||
break;
|
||||
} else if (!main_sim.IsOversized() && command-- == 0) {
|
||||
// CompareMainOrder.
|
||||
auto ref_a = pick_fn();
|
||||
auto ref_b = pick_fn();
|
||||
auto sim_a = main_sim.Find(ref_a);
|
||||
auto sim_b = main_sim.Find(ref_b);
|
||||
// Both transactions must exist in the main graph.
|
||||
if (sim_a == SimTxGraph::MISSING || sim_b == SimTxGraph::MISSING) break;
|
||||
auto cmp = real->CompareMainOrder(*ref_a, *ref_b);
|
||||
// Distinct transactions have distinct places.
|
||||
if (sim_a != sim_b) assert(cmp != 0);
|
||||
// Ancestors go before descendants.
|
||||
if (main_sim.graph.Ancestors(sim_a)[sim_b]) assert(cmp >= 0);
|
||||
if (main_sim.graph.Descendants(sim_a)[sim_b]) assert(cmp <= 0);
|
||||
// Do not verify consistency with chunk feerates, as we cannot easily determine
|
||||
// these here without making more calls to real, which could affect its internal
|
||||
// state. A full comparison is done at the end.
|
||||
break;
|
||||
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
||||
// CountDistinctClusters.
|
||||
std::vector<TxGraph::Ref*> refs;
|
||||
// Gather a list of up to 15 (or up to 255) Ref pointers.
|
||||
auto count = provider.ConsumeIntegralInRange<size_t>(0, alt ? 255 : 15);
|
||||
refs.resize(count);
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
refs[i] = pick_fn();
|
||||
}
|
||||
// Their order should not matter, shuffle them.
|
||||
std::shuffle(refs.begin(), refs.end(), rng);
|
||||
// Invoke the real function.
|
||||
auto result = real->CountDistinctClusters(refs, use_main);
|
||||
// Build a vector with representatives of the clusters the Refs occur in in the
|
||||
// simulated graph. For each, remember the lowest-index transaction SimPos in the
|
||||
// cluster.
|
||||
std::vector<DepGraphIndex> sim_reps;
|
||||
for (auto ref : refs) {
|
||||
// Skip Refs that do not occur in the simulated graph.
|
||||
auto simpos = sel_sim.Find(ref);
|
||||
if (simpos == SimTxGraph::MISSING) continue;
|
||||
// Start with component equal to just the Ref's SimPos.
|
||||
auto component = SimTxGraph::SetType::Singleton(simpos);
|
||||
// Keep adding ancestors/descendants of all elements in component until it no
|
||||
// longer changes.
|
||||
while (true) {
|
||||
auto old_component = component;
|
||||
for (auto i : component) {
|
||||
component |= sel_sim.graph.Ancestors(i);
|
||||
component |= sel_sim.graph.Descendants(i);
|
||||
}
|
||||
if (component == old_component) break;
|
||||
}
|
||||
// Remember the lowest-index SimPos in component, as a representative for it.
|
||||
assert(component.Any());
|
||||
sim_reps.push_back(component.First());
|
||||
}
|
||||
// Remove duplicates from sim_reps.
|
||||
std::sort(sim_reps.begin(), sim_reps.end());
|
||||
sim_reps.erase(std::unique(sim_reps.begin(), sim_reps.end()), sim_reps.end());
|
||||
// Compare the number of deduplicated representatives with the value returned by
|
||||
// the real function.
|
||||
assert(result == sim_reps.size());
|
||||
break;
|
||||
} else if (command-- == 0) {
|
||||
// DoWork.
|
||||
real->DoWork();
|
||||
break;
|
||||
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {
|
||||
// GetMainStagingDiagrams()
|
||||
auto [main_diagram, staged_diagram] = real->GetMainStagingDiagrams();
|
||||
auto sum_main = std::accumulate(main_diagram.begin(), main_diagram.end(), FeeFrac{});
|
||||
auto sum_staged = std::accumulate(staged_diagram.begin(), staged_diagram.end(), FeeFrac{});
|
||||
auto diagram_gain = sum_staged - sum_main;
|
||||
auto real_gain = sims[1].SumAll() - sims[0].SumAll();
|
||||
// Just check that the total fee gained/lost and size gained/lost according to the
|
||||
// diagram matches the difference in these values in the simulated graph. A more
|
||||
// complete check of the GetMainStagingDiagrams result is performed at the end.
|
||||
assert(diagram_gain == real_gain);
|
||||
// Check that the feerates in each diagram are monotonically decreasing.
|
||||
for (size_t i = 1; i < main_diagram.size(); ++i) {
|
||||
assert(FeeRateCompare(main_diagram[i], main_diagram[i - 1]) <= 0);
|
||||
}
|
||||
for (size_t i = 1; i < staged_diagram.size(); ++i) {
|
||||
assert(FeeRateCompare(staged_diagram[i], staged_diagram[i - 1]) <= 0);
|
||||
}
|
||||
break;
|
||||
} else if (block_builders.size() < 4 && !main_sim.IsOversized() && command-- == 0) {
|
||||
// GetBlockBuilder.
|
||||
block_builders.emplace_back(real->GetBlockBuilder());
|
||||
break;
|
||||
} else if (!block_builders.empty() && command-- == 0) {
|
||||
// ~BlockBuilder.
|
||||
block_builders.erase(block_builders.begin() + builder_idx);
|
||||
break;
|
||||
} else if (!block_builders.empty() && *block_builders[builder_idx].builder && command-- == 0) {
|
||||
// BlockBuilder::Include and BlockBuilder::Skip.
|
||||
auto& builder_data = block_builders[builder_idx];
|
||||
auto cur_feerate = builder_data.builder->GetCurrentChunkFeerate();
|
||||
// Chunk feerates must be monotonously decreasing.
|
||||
if (!builder_data.last_feerate.IsEmpty()) {
|
||||
assert(!(cur_feerate >> builder_data.last_feerate));
|
||||
}
|
||||
builder_data.last_feerate = cur_feerate;
|
||||
// Verify the contents of GetCurrentChunk.
|
||||
auto new_done = builder_data.done;
|
||||
FeePerWeight sum_feerate;
|
||||
for (TxGraph::Ref* ref : builder_data.builder->GetCurrentChunk()) {
|
||||
// Each transaction in the chunk must exist in the main graph.
|
||||
auto simpos = main_sim.Find(ref);
|
||||
assert(simpos != SimTxGraph::MISSING);
|
||||
// Verify the claimed chunk feerate.
|
||||
sum_feerate += main_sim.graph.FeeRate(simpos);
|
||||
// Make sure no transaction is reported twice.
|
||||
assert(!new_done[simpos]);
|
||||
new_done.Set(simpos);
|
||||
// The concatenation of all included transactions must be topologically valid.
|
||||
assert(main_sim.graph.Ancestors(simpos).IsSubsetOf(new_done));
|
||||
}
|
||||
assert(sum_feerate == cur_feerate);
|
||||
// Skip or Include.
|
||||
if (alt) {
|
||||
builder_data.builder->Skip();
|
||||
} else {
|
||||
builder_data.builder->Include();
|
||||
builder_data.done = new_done;
|
||||
}
|
||||
break;
|
||||
} else if (!main_sim.IsOversized() && command-- == 0) {
|
||||
// GetWorstMainChunk.
|
||||
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
|
||||
// Just do some sanity checks here. Consistency with GetBlockBuilder is checked
|
||||
// below.
|
||||
if (main_sim.GetTransactionCount() == 0) {
|
||||
assert(worst_chunk.empty());
|
||||
} else {
|
||||
assert(!worst_chunk.empty());
|
||||
SimTxGraph::SetType done;
|
||||
FeePerWeight sum;
|
||||
for (TxGraph::Ref* ref : worst_chunk) {
|
||||
// Each transaction in the chunk must exist in the main graph.
|
||||
auto simpos = main_sim.Find(ref);
|
||||
assert(simpos != SimTxGraph::MISSING);
|
||||
sum += main_sim.graph.FeeRate(simpos);
|
||||
// Make sure the chunk contains no duplicate transactions.
|
||||
assert(!done[simpos]);
|
||||
done.Set(simpos);
|
||||
// All elements are preceded by all their descendants.
|
||||
assert(main_sim.graph.Descendants(simpos).IsSubsetOf(done));
|
||||
}
|
||||
assert(sum == worst_chunk_feerate);
|
||||
}
|
||||
break;
|
||||
} else if ((block_builders.empty() || sims.size() > 1) && command-- == 0) {
|
||||
// Trim.
|
||||
bool was_oversized = top_sim.IsOversized();
|
||||
auto removed = real->Trim();
|
||||
if (!was_oversized) {
|
||||
assert(removed.empty());
|
||||
break;
|
||||
}
|
||||
auto removed_set = top_sim.MakeSet(removed);
|
||||
// The removed set must contain all its own descendants.
|
||||
for (auto simpos : removed_set) {
|
||||
assert(top_sim.graph.Descendants(simpos).IsSubsetOf(removed_set));
|
||||
}
|
||||
// Apply all removals to the simulation, and verify the result is no longer
|
||||
// oversized. Don't query the real graph for oversizedness; it is compared
|
||||
// against the simulation anyway later.
|
||||
for (auto simpos : removed_set) {
|
||||
top_sim.RemoveTransaction(top_sim.GetRef(simpos));
|
||||
}
|
||||
assert(!top_sim.IsOversized());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// After running all modifications, perform an internal sanity check (before invoking
|
||||
// inspectors that may modify the internal state).
|
||||
real->SanityCheck();
|
||||
|
||||
if (!sims[0].IsOversized()) {
|
||||
// If the main graph is not oversized, verify the total ordering implied by
|
||||
// CompareMainOrder.
|
||||
// First construct two distinct randomized permutations of the positions in sims[0].
|
||||
std::vector<SimTxGraph::Pos> vec1;
|
||||
for (auto i : sims[0].graph.Positions()) vec1.push_back(i);
|
||||
std::shuffle(vec1.begin(), vec1.end(), rng);
|
||||
auto vec2 = vec1;
|
||||
std::shuffle(vec2.begin(), vec2.end(), rng);
|
||||
if (vec1 == vec2) std::next_permutation(vec2.begin(), vec2.end());
|
||||
// Sort both according to CompareMainOrder. By having randomized starting points, the order
|
||||
// of CompareMainOrder invocations is somewhat randomized as well.
|
||||
auto cmp = [&](SimTxGraph::Pos a, SimTxGraph::Pos b) noexcept {
|
||||
return real->CompareMainOrder(*sims[0].GetRef(a), *sims[0].GetRef(b)) < 0;
|
||||
};
|
||||
std::sort(vec1.begin(), vec1.end(), cmp);
|
||||
std::sort(vec2.begin(), vec2.end(), cmp);
|
||||
|
||||
// Verify the resulting orderings are identical. This could only fail if the ordering was
|
||||
// not total.
|
||||
assert(vec1 == vec2);
|
||||
|
||||
// Verify that the ordering is topological.
|
||||
auto todo = sims[0].graph.Positions();
|
||||
for (auto i : vec1) {
|
||||
todo.Reset(i);
|
||||
assert(!sims[0].graph.Ancestors(i).Overlaps(todo));
|
||||
}
|
||||
assert(todo.None());
|
||||
|
||||
// For every transaction in the total ordering, find a random one before it and after it,
|
||||
// and compare their chunk feerates, which must be consistent with the ordering.
|
||||
for (size_t pos = 0; pos < vec1.size(); ++pos) {
|
||||
auto pos_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[pos]));
|
||||
if (pos > 0) {
|
||||
size_t before = rng.randrange<size_t>(pos);
|
||||
auto before_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[before]));
|
||||
assert(FeeRateCompare(before_feerate, pos_feerate) >= 0);
|
||||
}
|
||||
if (pos + 1 < vec1.size()) {
|
||||
size_t after = pos + 1 + rng.randrange<size_t>(vec1.size() - 1 - pos);
|
||||
auto after_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[after]));
|
||||
assert(FeeRateCompare(after_feerate, pos_feerate) <= 0);
|
||||
}
|
||||
}
|
||||
|
||||
// The same order should be obtained through a BlockBuilder, if nothing is skipped.
|
||||
auto builder = real->GetBlockBuilder();
|
||||
std::vector<SimTxGraph::Pos> vec_builder;
|
||||
std::vector<TxGraph::Ref*> chunk;
|
||||
FeePerWeight chunk_feerate;
|
||||
while (*builder) {
|
||||
FeePerWeight sum;
|
||||
auto chunk_span = builder->GetCurrentChunk();
|
||||
chunk.assign(chunk_span.begin(), chunk_span.end());
|
||||
for (TxGraph::Ref* ref : chunk_span) {
|
||||
// The reported chunk feerate must match the chunk feerate obtained by asking
|
||||
// it for each of the chunk's transactions individually.
|
||||
assert(real->GetMainChunkFeerate(*ref) == builder->GetCurrentChunkFeerate());
|
||||
// Verify the chunk feerate matches the sum of the reported individual feerates.
|
||||
sum += real->GetIndividualFeerate(*ref);
|
||||
// Chunks must contain transactions that exist in the graph.
|
||||
auto simpos = sims[0].Find(ref);
|
||||
assert(simpos != SimTxGraph::MISSING);
|
||||
vec_builder.push_back(simpos);
|
||||
}
|
||||
chunk_feerate = builder->GetCurrentChunkFeerate();
|
||||
assert(sum == chunk_feerate);
|
||||
builder->Include();
|
||||
}
|
||||
assert(vec_builder == vec1);
|
||||
|
||||
// The last chunk returned by the BlockBuilder must match GetWorstMainChunk, in reverse.
|
||||
std::reverse(chunk.begin(), chunk.end());
|
||||
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
|
||||
assert(chunk == worst_chunk);
|
||||
assert(chunk_feerate == worst_chunk_feerate);
|
||||
|
||||
// Check that the implied ordering gives rise to a combined diagram that matches the
|
||||
// diagram constructed from the individual cluster linearization chunkings.
|
||||
auto main_diagram = get_diagram_fn(true);
|
||||
auto expected_main_diagram = ChunkLinearization(sims[0].graph, vec1);
|
||||
assert(CompareChunks(main_diagram, expected_main_diagram) == 0);
|
||||
|
||||
if (sims.size() >= 2 && !sims[1].IsOversized()) {
|
||||
// When the staging graph is not oversized as well, call GetMainStagingDiagrams, and
|
||||
// fully verify the result.
|
||||
auto [main_cmp_diagram, stage_cmp_diagram] = real->GetMainStagingDiagrams();
|
||||
// Check that the feerates in each diagram are monotonically decreasing.
|
||||
for (size_t i = 1; i < main_cmp_diagram.size(); ++i) {
|
||||
assert(FeeRateCompare(main_cmp_diagram[i], main_cmp_diagram[i - 1]) <= 0);
|
||||
}
|
||||
for (size_t i = 1; i < stage_cmp_diagram.size(); ++i) {
|
||||
assert(FeeRateCompare(stage_cmp_diagram[i], stage_cmp_diagram[i - 1]) <= 0);
|
||||
}
|
||||
// Apply total ordering on the feerate diagrams to make them comparable (the exact
|
||||
// tie breaker among equal-feerate FeeFracs does not matter, but it has to be
|
||||
// consistent with the one used in main_diagram and stage_diagram).
|
||||
std::sort(main_cmp_diagram.begin(), main_cmp_diagram.end(), std::greater{});
|
||||
std::sort(stage_cmp_diagram.begin(), stage_cmp_diagram.end(), std::greater{});
|
||||
// Find the chunks that appear in main_diagram but are missing from main_cmp_diagram.
|
||||
// This is allowed, because GetMainStagingDiagrams omits clusters in main unaffected
|
||||
// by staging.
|
||||
std::vector<FeeFrac> missing_main_cmp;
|
||||
std::set_difference(main_diagram.begin(), main_diagram.end(),
|
||||
main_cmp_diagram.begin(), main_cmp_diagram.end(),
|
||||
std::inserter(missing_main_cmp, missing_main_cmp.end()),
|
||||
std::greater{});
|
||||
assert(main_cmp_diagram.size() + missing_main_cmp.size() == main_diagram.size());
|
||||
// Do the same for chunks in stage_diagram missign from stage_cmp_diagram.
|
||||
auto stage_diagram = get_diagram_fn(false);
|
||||
std::vector<FeeFrac> missing_stage_cmp;
|
||||
std::set_difference(stage_diagram.begin(), stage_diagram.end(),
|
||||
stage_cmp_diagram.begin(), stage_cmp_diagram.end(),
|
||||
std::inserter(missing_stage_cmp, missing_stage_cmp.end()),
|
||||
std::greater{});
|
||||
assert(stage_cmp_diagram.size() + missing_stage_cmp.size() == stage_diagram.size());
|
||||
// The missing chunks must be equal across main & staging (otherwise they couldn't have
|
||||
// been omitted).
|
||||
assert(missing_main_cmp == missing_stage_cmp);
|
||||
}
|
||||
}
|
||||
|
||||
assert(real->HaveStaging() == (sims.size() > 1));
|
||||
|
||||
// Try to run a full comparison, for both main_only=false and main_only=true in TxGraph
|
||||
// inspector functions that support both.
|
||||
for (int main_only = 0; main_only < 2; ++main_only) {
|
||||
auto& sim = main_only ? sims[0] : sims.back();
|
||||
// Compare simple properties of the graph with the simulation.
|
||||
assert(real->IsOversized(main_only) == sim.IsOversized());
|
||||
assert(real->GetTransactionCount(main_only) == sim.GetTransactionCount());
|
||||
// If the graph (and the simulation) are not oversized, perform a full comparison.
|
||||
if (!sim.IsOversized()) {
|
||||
auto todo = sim.graph.Positions();
|
||||
// Iterate over all connected components of the resulting (simulated) graph, each of which
|
||||
// should correspond to a cluster in the real one.
|
||||
while (todo.Any()) {
|
||||
auto component = sim.graph.FindConnectedComponent(todo);
|
||||
todo -= component;
|
||||
// Iterate over the transactions in that component.
|
||||
for (auto i : component) {
|
||||
// Check its individual feerate against simulation.
|
||||
assert(sim.graph.FeeRate(i) == real->GetIndividualFeerate(*sim.GetRef(i)));
|
||||
// Check its ancestors against simulation.
|
||||
auto expect_anc = sim.graph.Ancestors(i);
|
||||
auto anc = sim.MakeSet(real->GetAncestors(*sim.GetRef(i), main_only));
|
||||
assert(anc.Count() <= max_count);
|
||||
assert(anc == expect_anc);
|
||||
// Check its descendants against simulation.
|
||||
auto expect_desc = sim.graph.Descendants(i);
|
||||
auto desc = sim.MakeSet(real->GetDescendants(*sim.GetRef(i), main_only));
|
||||
assert(desc.Count() <= max_count);
|
||||
assert(desc == expect_desc);
|
||||
// Check the cluster the transaction is part of.
|
||||
auto cluster = real->GetCluster(*sim.GetRef(i), main_only);
|
||||
assert(cluster.size() <= max_count);
|
||||
assert(sim.MakeSet(cluster) == component);
|
||||
// Check that the cluster is reported in a valid topological order (its
|
||||
// linearization).
|
||||
std::vector<DepGraphIndex> simlin;
|
||||
SimTxGraph::SetType done;
|
||||
uint64_t total_size{0};
|
||||
for (TxGraph::Ref* ptr : cluster) {
|
||||
auto simpos = sim.Find(ptr);
|
||||
assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done));
|
||||
done.Set(simpos);
|
||||
assert(sim.graph.Ancestors(simpos).IsSubsetOf(done));
|
||||
simlin.push_back(simpos);
|
||||
total_size += sim.graph.FeeRate(simpos).size;
|
||||
}
|
||||
// Check cluster size.
|
||||
assert(total_size <= max_size);
|
||||
// Construct a chunking object for the simulated graph, using the reported cluster
|
||||
// linearization as ordering, and compare it against the reported chunk feerates.
|
||||
if (sims.size() == 1 || main_only) {
|
||||
cluster_linearize::LinearizationChunking simlinchunk(sim.graph, simlin);
|
||||
DepGraphIndex idx{0};
|
||||
for (unsigned chunknum = 0; chunknum < simlinchunk.NumChunksLeft(); ++chunknum) {
|
||||
auto chunk = simlinchunk.GetChunk(chunknum);
|
||||
// Require that the chunks of cluster linearizations are connected (this must
|
||||
// be the case as all linearizations inside are PostLinearized).
|
||||
assert(sim.graph.IsConnected(chunk.transactions));
|
||||
// Check the chunk feerates of all transactions in the cluster.
|
||||
while (chunk.transactions.Any()) {
|
||||
assert(chunk.transactions[simlin[idx]]);
|
||||
chunk.transactions.Reset(simlin[idx]);
|
||||
assert(chunk.feerate == real->GetMainChunkFeerate(*cluster[idx]));
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sanity check again (because invoking inspectors may modify internal unobservable state).
|
||||
real->SanityCheck();
|
||||
}
|
@ -23,18 +23,6 @@ using namespace cluster_linearize;
|
||||
|
||||
using TestBitSet = BitSet<32>;
|
||||
|
||||
/** Check if a graph is acyclic. */
|
||||
template<typename SetType>
|
||||
bool IsAcyclic(const DepGraph<SetType>& depgraph) noexcept
|
||||
{
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
if ((depgraph.Ancestors(i) & depgraph.Descendants(i)) != SetType::Singleton(i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/** A formatter for a bespoke serialization for acyclic DepGraph objects.
|
||||
*
|
||||
* The serialization format outputs information about transactions in a topological order (parents
|
||||
@ -134,10 +122,10 @@ struct DepGraphFormatter
|
||||
static void Ser(Stream& s, const DepGraph<SetType>& depgraph)
|
||||
{
|
||||
/** Construct a topological order to serialize the transactions in. */
|
||||
std::vector<ClusterIndex> topo_order;
|
||||
std::vector<DepGraphIndex> topo_order;
|
||||
topo_order.reserve(depgraph.TxCount());
|
||||
for (auto i : depgraph.Positions()) topo_order.push_back(i);
|
||||
std::sort(topo_order.begin(), topo_order.end(), [&](ClusterIndex a, ClusterIndex b) {
|
||||
std::sort(topo_order.begin(), topo_order.end(), [&](DepGraphIndex a, DepGraphIndex b) {
|
||||
auto anc_a = depgraph.Ancestors(a).Count(), anc_b = depgraph.Ancestors(b).Count();
|
||||
if (anc_a != anc_b) return anc_a < anc_b;
|
||||
return a < b;
|
||||
@ -148,9 +136,9 @@ struct DepGraphFormatter
|
||||
SetType done;
|
||||
|
||||
// Loop over the transactions in topological order.
|
||||
for (ClusterIndex topo_idx = 0; topo_idx < topo_order.size(); ++topo_idx) {
|
||||
for (DepGraphIndex topo_idx = 0; topo_idx < topo_order.size(); ++topo_idx) {
|
||||
/** Which depgraph index we are currently writing. */
|
||||
ClusterIndex idx = topo_order[topo_idx];
|
||||
DepGraphIndex idx = topo_order[topo_idx];
|
||||
// Write size, which must be larger than 0.
|
||||
s << VARINT_MODE(depgraph.FeeRate(idx).size, VarIntMode::NONNEGATIVE_SIGNED);
|
||||
// Write fee, encoded as an unsigned varint (odd=negative, even=non-negative).
|
||||
@ -158,9 +146,9 @@ struct DepGraphFormatter
|
||||
// Write dependency information.
|
||||
SetType written_parents;
|
||||
uint64_t diff = 0; //!< How many potential parent/child relations we have skipped over.
|
||||
for (ClusterIndex dep_dist = 0; dep_dist < topo_idx; ++dep_dist) {
|
||||
for (DepGraphIndex dep_dist = 0; dep_dist < topo_idx; ++dep_dist) {
|
||||
/** Which depgraph index we are currently considering as parent of idx. */
|
||||
ClusterIndex dep_idx = topo_order[topo_idx - 1 - dep_dist];
|
||||
DepGraphIndex dep_idx = topo_order[topo_idx - 1 - dep_dist];
|
||||
// Ignore transactions which are already known to be ancestors.
|
||||
if (depgraph.Descendants(dep_idx).Overlaps(written_parents)) continue;
|
||||
if (depgraph.Ancestors(idx)[dep_idx]) {
|
||||
@ -203,9 +191,9 @@ struct DepGraphFormatter
|
||||
DepGraph<SetType> topo_depgraph;
|
||||
/** Mapping from serialization order to cluster order, used later to reconstruct the
|
||||
* cluster order. */
|
||||
std::vector<ClusterIndex> reordering;
|
||||
std::vector<DepGraphIndex> reordering;
|
||||
/** How big the entries vector in the reconstructed depgraph will be (including holes). */
|
||||
ClusterIndex total_size{0};
|
||||
DepGraphIndex total_size{0};
|
||||
|
||||
// Read transactions in topological order.
|
||||
while (true) {
|
||||
@ -229,9 +217,9 @@ struct DepGraphFormatter
|
||||
// Read dependency information.
|
||||
auto topo_idx = reordering.size();
|
||||
s >> VARINT(diff);
|
||||
for (ClusterIndex dep_dist = 0; dep_dist < topo_idx; ++dep_dist) {
|
||||
for (DepGraphIndex dep_dist = 0; dep_dist < topo_idx; ++dep_dist) {
|
||||
/** Which topo_depgraph index we are currently considering as parent of topo_idx. */
|
||||
ClusterIndex dep_topo_idx = topo_idx - 1 - dep_dist;
|
||||
DepGraphIndex dep_topo_idx = topo_idx - 1 - dep_dist;
|
||||
// Ignore transactions which are already known ancestors of topo_idx.
|
||||
if (new_ancestors[dep_topo_idx]) continue;
|
||||
if (diff == 0) {
|
||||
@ -298,9 +286,9 @@ template<typename SetType>
|
||||
void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
{
|
||||
// Verify Positions and PositionRange consistency.
|
||||
ClusterIndex num_positions{0};
|
||||
ClusterIndex position_range{0};
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
DepGraphIndex num_positions{0};
|
||||
DepGraphIndex position_range{0};
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
++num_positions;
|
||||
position_range = i + 1;
|
||||
}
|
||||
@ -309,7 +297,7 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
assert(position_range >= num_positions);
|
||||
assert(position_range <= SetType::Size());
|
||||
// Consistency check between ancestors internally.
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
// Transactions include themselves as ancestors.
|
||||
assert(depgraph.Ancestors(i)[i]);
|
||||
// If a is an ancestor of b, then b's ancestors must include all of a's ancestors.
|
||||
@ -318,8 +306,8 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
}
|
||||
}
|
||||
// Consistency check between ancestors and descendants.
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (ClusterIndex j : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex j : depgraph.Positions()) {
|
||||
assert(depgraph.Ancestors(i)[j] == depgraph.Descendants(j)[i]);
|
||||
}
|
||||
// No transaction is a parent or child of itself.
|
||||
@ -337,7 +325,7 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
assert((depgraph.Descendants(child) & children).IsSubsetOf(SetType::Singleton(child)));
|
||||
}
|
||||
}
|
||||
if (IsAcyclic(depgraph)) {
|
||||
if (depgraph.IsAcyclic()) {
|
||||
// If DepGraph is acyclic, serialize + deserialize must roundtrip.
|
||||
std::vector<unsigned char> ser;
|
||||
VectorWriter writer(ser, 0);
|
||||
@ -360,7 +348,7 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
// In acyclic graphs, the union of parents with parents of parents etc. yields the
|
||||
// full ancestor set (and similar for children and descendants).
|
||||
std::vector<SetType> parents(depgraph.PositionRange()), children(depgraph.PositionRange());
|
||||
for (ClusterIndex i : depgraph.Positions()) {
|
||||
for (DepGraphIndex i : depgraph.Positions()) {
|
||||
parents[i] = depgraph.GetReducedParents(i);
|
||||
children[i] = depgraph.GetReducedChildren(i);
|
||||
}
|
||||
@ -392,7 +380,7 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
|
||||
|
||||
/** Perform a sanity check on a linearization. */
|
||||
template<typename SetType>
|
||||
void SanityCheck(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization)
|
||||
void SanityCheck(const DepGraph<SetType>& depgraph, Span<const DepGraphIndex> linearization)
|
||||
{
|
||||
// Check completeness.
|
||||
assert(linearization.size() == depgraph.TxCount());
|
||||
|
2795
src/txgraph.cpp
Normal file
2795
src/txgraph.cpp
Normal file
File diff suppressed because it is too large
Load Diff
221
src/txgraph.h
Normal file
221
src/txgraph.h
Normal file
@ -0,0 +1,221 @@
|
||||
// Copyright (c) The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <compare>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <stdint.h>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
#include <util/feefrac.h>
|
||||
|
||||
#ifndef BITCOIN_TXGRAPH_H
|
||||
#define BITCOIN_TXGRAPH_H
|
||||
|
||||
static constexpr unsigned MAX_CLUSTER_COUNT_LIMIT{64};
|
||||
|
||||
/** Data structure to encapsulate fees, sizes, and dependencies for a set of transactions. */
|
||||
class TxGraph
|
||||
{
|
||||
public:
|
||||
/** Internal identifier for a transaction within a TxGraph. */
|
||||
using GraphIndex = uint32_t;
|
||||
|
||||
/** Data type used to reference transactions within a TxGraph.
|
||||
*
|
||||
* Every transaction within a TxGraph has exactly one corresponding TxGraph::Ref, held by users
|
||||
* of the class. Destroying the TxGraph::Ref removes the corresponding transaction.
|
||||
*
|
||||
* Users of the class can inherit from TxGraph::Ref. If all Refs are inherited this way, the
|
||||
* Ref* pointers returned by TxGraph functions can be used as this inherited type.
|
||||
*/
|
||||
class Ref
|
||||
{
|
||||
// Allow TxGraph's GetRefGraph and GetRefIndex to access internals.
|
||||
friend class TxGraph;
|
||||
/** Which Graph the Entry lives in. nullptr if this Ref is empty. */
|
||||
TxGraph* m_graph = nullptr;
|
||||
/** Index into the Graph's m_entries. Only used if m_graph != nullptr. */
|
||||
GraphIndex m_index = GraphIndex(-1);
|
||||
public:
|
||||
/** Construct an empty Ref. Non-empty Refs can only be created using
|
||||
* TxGraph::AddTransaction. */
|
||||
Ref() noexcept = default;
|
||||
/** Destroy this Ref. If it is not empty, the corresponding transaction is removed (in both
|
||||
* main and staging, if it exists). */
|
||||
virtual ~Ref();
|
||||
// Support moving a Ref.
|
||||
Ref& operator=(Ref&& other) noexcept;
|
||||
Ref(Ref&& other) noexcept;
|
||||
// Do not permit copy constructing or copy assignment. A TxGraph entry can have at most one
|
||||
// Ref pointing to it.
|
||||
Ref& operator=(const Ref&) = delete;
|
||||
Ref(const Ref&) = delete;
|
||||
};
|
||||
|
||||
/** Interface returned by GetBlockBuilder. */
|
||||
class BlockBuilder
|
||||
{
|
||||
protected:
|
||||
/** The next chunk, in topological order plus feerate, or std::nullopt if done. */
|
||||
std::optional<std::pair<std::span<Ref*>, FeePerWeight>> m_current_chunk;
|
||||
/** Make constructor non-public (use TxGraph::GetBlockBuilder()). */
|
||||
BlockBuilder() noexcept = default;
|
||||
public:
|
||||
/** Support safe inheritance. */
|
||||
virtual ~BlockBuilder() = default;
|
||||
/** Determine whether there are more transactions to be included. */
|
||||
explicit operator bool() noexcept { return m_current_chunk.has_value(); }
|
||||
/** Get the chunk that is currently suggested to be included. */
|
||||
const std::span<Ref*>& GetCurrentChunk() noexcept { return m_current_chunk->first; }
|
||||
/** Get the feerate of the currently suggested chunk. */
|
||||
const FeePerWeight& GetCurrentChunkFeerate() noexcept { return m_current_chunk->second; }
|
||||
/** Mark the current chunk as included, and progress to the next one. */
|
||||
virtual void Include() noexcept = 0;
|
||||
/** Mark the current chunk as skipped, and progress to the next one. */
|
||||
virtual void Skip() noexcept = 0;
|
||||
};
|
||||
|
||||
protected:
|
||||
// Allow TxGraph::Ref to call UpdateRef and UnlinkRef.
|
||||
friend class TxGraph::Ref;
|
||||
/** Inform the TxGraph implementation that a TxGraph::Ref has moved. */
|
||||
virtual void UpdateRef(GraphIndex index, Ref& new_location) noexcept = 0;
|
||||
/** Inform the TxGraph implementation that a TxGraph::Ref was destroyed. */
|
||||
virtual void UnlinkRef(GraphIndex index) noexcept = 0;
|
||||
// Allow TxGraph implementations (inheriting from it) to access Ref internals.
|
||||
static TxGraph*& GetRefGraph(Ref& arg) noexcept { return arg.m_graph; }
|
||||
static TxGraph* GetRefGraph(const Ref& arg) noexcept { return arg.m_graph; }
|
||||
static GraphIndex& GetRefIndex(Ref& arg) noexcept { return arg.m_index; }
|
||||
static GraphIndex GetRefIndex(const Ref& arg) noexcept { return arg.m_index; }
|
||||
|
||||
public:
|
||||
/** Virtual destructor, so inheriting is safe. */
|
||||
virtual ~TxGraph() = default;
|
||||
/** Construct a new transaction with the specified feerate, and return a Ref to it.
|
||||
* If a staging graph exists, the new transaction is only created there. In all further calls,
|
||||
* only Refs created by AddTransaction() are allowed to be passed to this TxGraph object (or
|
||||
* empty Ref objects). */
|
||||
[[nodiscard]] virtual Ref AddTransaction(const FeePerWeight& feerate) noexcept = 0;
|
||||
/** Remove the specified transaction. If a staging graph exists, the removal only happens
|
||||
* there. This is a no-op if the transaction was already removed.
|
||||
*
|
||||
* TxGraph may internally reorder transaction removals with dependency additions for
|
||||
* performance reasons. If together with any transaction removal all its descendants, or all
|
||||
* its ancestors, are removed as well (which is what always happens in realistic scenarios),
|
||||
* this reordering will not affect the behavior of TxGraph.
|
||||
*
|
||||
* As an example, imagine 3 transactions A,B,C where B depends on A. If a dependency of C on B
|
||||
* is added, and then B is deleted, C will still depend on A. If the deletion of B is reordered
|
||||
* before the C->B dependency is added, the dependency adding has no effect. If, together with
|
||||
* the deletion of B also either A or C is deleted, there is no distinction between the
|
||||
* original order case and the reordered case.
|
||||
*/
|
||||
virtual void RemoveTransaction(const Ref& arg) noexcept = 0;
|
||||
/** Add a dependency between two specified transactions. If a staging graph exists, the
|
||||
* dependency is only added there. Parent may not be a descendant of child already (but may
|
||||
* be an ancestor of it already, in which case this is a no-op). If either transaction is
|
||||
* already removed, this is a no-op. */
|
||||
virtual void AddDependency(const Ref& parent, const Ref& child) noexcept = 0;
|
||||
/** Modify the fee of the specified transaction, in both the main graph and the staging
|
||||
* graph if it exists. Wherever the transaction does not exist (or was removed), this has no
|
||||
* effect. */
|
||||
virtual void SetTransactionFee(const Ref& arg, int64_t fee) noexcept = 0;
|
||||
|
||||
/** TxGraph is internally lazy, and will not compute many things until they are needed.
|
||||
* Calling DoWork will compute everything now, so that future operations are fast. This can be
|
||||
* invoked while oversized. */
|
||||
virtual void DoWork() noexcept = 0;
|
||||
|
||||
/** Create a staging graph (which cannot exist already). This acts as if a full copy of
|
||||
* the transaction graph is made, upon which further modifications are made. This copy can
|
||||
* be inspected, and then either discarded, or the main graph can be replaced by it by
|
||||
* commiting it. */
|
||||
virtual void StartStaging() noexcept = 0;
|
||||
/** Discard the existing active staging graph (which must exist). */
|
||||
virtual void AbortStaging() noexcept = 0;
|
||||
/** Replace the main graph with the staging graph (which must exist). */
|
||||
virtual void CommitStaging() noexcept = 0;
|
||||
/** Check whether a staging graph exists. */
|
||||
virtual bool HaveStaging() const noexcept = 0;
|
||||
|
||||
/** Determine whether arg exists in the graph (i.e., was not removed). If main_only is false
|
||||
* and a staging graph exists, it is queried; otherwise the main graph is queried. */
|
||||
virtual bool Exists(const Ref& arg, bool main_only = false) noexcept = 0;
|
||||
/** Determine whether the graph is oversized (contains a connected component of more than the
|
||||
* configured maximum cluster count). If main_only is false and a staging graph exists, it is
|
||||
* queried; otherwise the main graph is queried. Some of the functions below are not available
|
||||
* for oversized graphs. The mutators above are always available. Removing a transaction by
|
||||
* destroying its Ref while staging exists will not clear main's oversizedness until staging
|
||||
* is aborted or committed. */
|
||||
virtual bool IsOversized(bool main_only = false) noexcept = 0;
|
||||
/** Get the feerate of the chunk which transaction arg is in the main graph. Returns the empty
|
||||
* FeePerWeight if arg does not exist in the main graph. The main graph must not be
|
||||
* oversized. */
|
||||
virtual FeePerWeight GetMainChunkFeerate(const Ref& arg) noexcept = 0;
|
||||
/** Get the individual transaction feerate of transaction arg. Returns the empty FeePerWeight
|
||||
* if arg does not exist in either main or staging. This is available even for oversized
|
||||
* graphs. */
|
||||
virtual FeePerWeight GetIndividualFeerate(const Ref& arg) noexcept = 0;
|
||||
/** Get pointers to all transactions in the connected component ("cluster") which arg is in.
|
||||
* The transactions will be returned in a topologically-valid order of acceptable quality.
|
||||
* If main_only is false and a staging graph exists, it is queried; otherwise the main graph
|
||||
* is queried. The queried graph must not be oversized. Returns {} if arg does not exist in
|
||||
* the queried graph. */
|
||||
virtual std::vector<Ref*> GetCluster(const Ref& arg, bool main_only = false) noexcept = 0;
|
||||
/** Get pointers to all ancestors of the specified transaction. If main_only is false and a
|
||||
* staging graph exists, it is queried; otherwise the main graph is queried. The queried
|
||||
* graph must not be oversized. Returns {} if arg does not exist in the queried graph. */
|
||||
virtual std::vector<Ref*> GetAncestors(const Ref& arg, bool main_only = false) noexcept = 0;
|
||||
/** Like GetAncestors, but return the Refs for all transactions in the union of the provided
|
||||
* arguments' ancestors (each transaction is only reported once). */
|
||||
virtual std::vector<Ref*> GetAncestorsUnion(std::span<const Ref* const> args, bool main_only = false) noexcept = 0;
|
||||
/** Get pointers to all descendants of the specified transaction. If main_only is false and a
|
||||
* staging graph exists, it is queried; otherwise the main graph is queried. The queried
|
||||
* graph must not be oversized. Returns {} if arg does not exist in the queried graph. */
|
||||
virtual std::vector<Ref*> GetDescendants(const Ref& arg, bool main_only = false) noexcept = 0;
|
||||
/** Like GetDescendants, but return the Refs for all transactions in the union of the provided
|
||||
* arguments' descendants (each transaction is only reported once). */
|
||||
virtual std::vector<Ref*> GetDescendantsUnion(std::span<const Ref* const> args, bool main_only = false) noexcept = 0;
|
||||
/** Get the total number of transactions in the graph. If main_only is false and a staging
|
||||
* graph exists, it is queried; otherwise the main graph is queried. This is available even
|
||||
* for oversized graphs. */
|
||||
virtual GraphIndex GetTransactionCount(bool main_only = false) noexcept = 0;
|
||||
/** Compare two transactions according to the total order in the main graph (topological, and
|
||||
* from high to low chunk feerate). Both transactions must be in the main graph. The main
|
||||
* graph must not be oversized. */
|
||||
virtual std::strong_ordering CompareMainOrder(const Ref& a, const Ref& b) noexcept = 0;
|
||||
/** Count the number of distinct clusters that the specified transactions belong to. If
|
||||
* main_only is false and a staging graph exists, staging clusters are counted. Otherwise,
|
||||
* main clusters are counted. Refs that do not exist in the graph are not counted. The
|
||||
* queried graph must not be oversized. */
|
||||
virtual GraphIndex CountDistinctClusters(std::span<const Ref* const>, bool main_only = false) noexcept = 0;
|
||||
/** Get feerate diagrams for both main and staging (which must both exist and not be
|
||||
* oversized), ignoring unmodified components in both. Use FeeFrac rather than FeePerWeight
|
||||
* so CompareChunks is usable without type-conversion. */
|
||||
virtual std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>> GetMainStagingDiagrams() noexcept = 0;
|
||||
/** Trim all clusters (and would-be clusters) to the TxGraph's cluster count and size
|
||||
* constraints. Returns the list of all removed transactions, which will always include all
|
||||
* its own descendants. Applies to staging if it exists, and main otherwise. */
|
||||
virtual std::vector<Ref*> Trim() noexcept = 0;
|
||||
|
||||
/** Construct a block builder, drawing from the main graph, which cannot be oversized. While
|
||||
* the returned object exists, no mutators on the main graph are allowed. */
|
||||
virtual std::unique_ptr<BlockBuilder> GetBlockBuilder() noexcept = 0;
|
||||
/** Get the worst chunk overall in the main graph, i.e., the last chunk that would be returned
|
||||
* by a BlockBuilder created now. The chunk is returned in reversed order, so every element is
|
||||
* preceded by all its descendants. If the graph is empty, {} is returned. */
|
||||
virtual std::pair<std::vector<Ref*>, FeePerWeight> GetWorstMainChunk() noexcept = 0;
|
||||
|
||||
/** Perform an internal consistency check on this object. */
|
||||
virtual void SanityCheck() const = 0;
|
||||
};
|
||||
|
||||
/** Construct a new TxGraph with the specified limit on transactions within a cluster, and the
|
||||
* specified limit on the sum of transaction sizes within a cluster. max_cluster_count cannot
|
||||
* exceed MAX_CLUSTER_COUNT_LIMIT. */
|
||||
std::unique_ptr<TxGraph> MakeTxGraph(unsigned max_cluster_count, uint64_t max_cluster_size) noexcept;
|
||||
|
||||
#endif // BITCOIN_TXGRAPH_H
|
@ -36,7 +36,7 @@ std::partial_ordering CompareChunks(Span<const FeeFrac> chunks0, Span<const FeeF
|
||||
// Let `P` be the next point on diagram unproc_side, and `A` and `B` the previous and next points
|
||||
// on the other diagram. We want to know if P lies above or below the line AB. To determine this, we
|
||||
// compute the slopes of line AB and of line AP, and compare them. These slopes are fee per size,
|
||||
// and can thus be expressed as FeeFracs.
|
||||
// and can thus be expressed as FeeRates.
|
||||
const FeeFrac& point_p = next_point(unproc_side);
|
||||
const FeeFrac& point_a = prev_point(!unproc_side);
|
||||
|
||||
|
@ -156,4 +156,26 @@ struct FeeFrac
|
||||
*/
|
||||
std::partial_ordering CompareChunks(Span<const FeeFrac> chunks0, Span<const FeeFrac> chunks1);
|
||||
|
||||
/** Tagged wrapper around FeeFrac to avoid unit confusion. */
|
||||
template<typename Tag>
|
||||
struct FeePerUnit : public FeeFrac
|
||||
{
|
||||
// Inherit FeeFrac constructors.
|
||||
using FeeFrac::FeeFrac;
|
||||
|
||||
/** Convert a FeeFrac to a FeePerUnit. */
|
||||
static FeePerUnit FromFeeFrac(const FeeFrac& feefrac) noexcept
|
||||
{
|
||||
return {feefrac.fee, feefrac.size};
|
||||
}
|
||||
};
|
||||
|
||||
// FeePerUnit instance for satoshi / vbyte.
|
||||
struct VSizeTag {};
|
||||
using FeePerVSize = FeePerUnit<VSizeTag>;
|
||||
|
||||
// FeePerUnit instance for satoshi / WU.
|
||||
struct WeightTag {};
|
||||
using FeePerWeight = FeePerUnit<WeightTag>;
|
||||
|
||||
#endif // BITCOIN_UTIL_FEEFRAC_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user