Taproot descriptor inference

This commit is contained in:
Pieter Wuille
2021-06-04 15:06:16 -07:00
parent c7388e5ada
commit d637a9b397
4 changed files with 237 additions and 9 deletions

View File

@@ -520,3 +520,138 @@ TaprootSpendData TaprootBuilder::GetSpendData() const
}
return spd;
}
std::optional<std::vector<std::tuple<int, CScript, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
{
// Verify that the output matches the assumed Merkle root and internal key.
auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
if (!tweak || tweak->first != output) return std::nullopt;
// If the Merkle root is 0, the tree is empty, and we're done.
std::vector<std::tuple<int, CScript, int>> ret;
if (spenddata.merkle_root.IsNull()) return ret;
/** Data structure to represent the nodes of the tree we're going to be build. */
struct TreeNode {
/** Hash of this none, if known; 0 otherwise. */
uint256 hash;
/** The left and right subtrees (note that their order is irrelevant). */
std::unique_ptr<TreeNode> sub[2];
/** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
* nullptr otherwise. */
const std::pair<CScript, int>* leaf = nullptr;
/** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
bool explored = false;
/** Whether or not this node is an inner node (unknown until explored = true). */
bool inner;
/** Whether or not we have produced output for this subtree. */
bool done = false;
};
// Build tree from the provides branches.
TreeNode root;
root.hash = spenddata.merkle_root;
for (const auto& [key, control_blocks] : spenddata.scripts) {
const auto& [script, leaf_ver] = key;
for (const auto& control : control_blocks) {
// Skip script records with nonsensical leaf version.
if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
// Skip script records with invalid control block sizes.
if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
// Skip script records that don't match the control block.
if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
// Skip script records that don't match the provided Merkle root.
const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
if (merkle_root != spenddata.merkle_root) continue;
TreeNode* node = &root;
size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
for (size_t depth = 0; depth < levels; ++depth) {
// Can't descend into a node which we already know is a leaf.
if (node->explored && !node->inner) return std::nullopt;
// Extract partner hash from Merkle branch in control block.
uint256 hash;
std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
hash.begin());
if (node->sub[0]) {
// Descend into the existing left or right branch.
bool desc = false;
for (int i = 0; i < 2; ++i) {
if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
node->sub[i]->hash = hash;
node = &*node->sub[1-i];
desc = true;
break;
}
}
if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
} else {
// We're in an unexplored node. Create subtrees and descend.
node->explored = true;
node->inner = true;
node->sub[0] = std::make_unique<TreeNode>();
node->sub[1] = std::make_unique<TreeNode>();
node->sub[1]->hash = hash;
node = &*node->sub[0];
}
}
// Cannot turn a known inner node into a leaf.
if (node->sub[0]) return std::nullopt;
node->explored = true;
node->inner = false;
node->leaf = &key;
node->hash = leaf_hash;
}
}
// Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
// overflowing the call stack (the tree may be 128 levels deep).
std::vector<TreeNode*> stack{&root};
while (!stack.empty()) {
TreeNode& node = *stack.back();
if (!node.explored) {
// Unexplored node, which means the tree is incomplete.
return std::nullopt;
} else if (!node.inner) {
// Leaf node; produce output.
ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
node.done = true;
stack.pop_back();
} else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
(CHashWriter{HASHER_TAPBRANCH} << node.sub[1]->hash << node.sub[1]->hash).GetSHA256() == node.hash) {
// Whenever there are nodes with two identical subtrees under it, we run into a problem:
// the control blocks for the leaves underneath those will be identical as well, and thus
// they will all be matched to the same path in the tree. The result is that at the location
// where the duplicate occurred, the left child will contain a normal tree that can be explored
// and processed, but the right one will remain unexplored.
//
// This situation can be detected, by encountering an inner node with unexplored right subtree
// with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
//
// To deal with this, simply process the left tree a second time (set its done flag to false;
// noting that the done flag of its children have already been set to false after processing
// those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
// subtree to true.
node.sub[0]->done = false;
node.sub[1]->done = true;
} else if (node.sub[0]->done && node.sub[1]->done) {
// An internal node which we're finished with.
node.sub[0]->done = false;
node.sub[1]->done = false;
node.done = true;
stack.pop_back();
} else if (!node.sub[0]->done) {
// An internal node whose left branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[0]);
} else if (!node.sub[1]->done) {
// An internal node whose right branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[1]);
}
}
return ret;
}