mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-11-11 14:38:29 +01:00
CSecret/CKey -> CKey/CPubKey split/refactor
This commit is contained in:
committed by
Pieter Wuille
parent
5d891489ab
commit
dfa23b94c2
497
src/key.cpp
497
src/key.cpp
@@ -2,13 +2,16 @@
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <map>
|
||||
|
||||
#include <openssl/ecdsa.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <openssl/obj_mac.h>
|
||||
|
||||
#include "key.h"
|
||||
|
||||
|
||||
// anonymous namespace with local implementation code (OpenSSL interaction)
|
||||
namespace {
|
||||
|
||||
// Generate a private key from just the secret parameter
|
||||
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
|
||||
{
|
||||
@@ -120,293 +123,273 @@ err:
|
||||
return ret;
|
||||
}
|
||||
|
||||
void CKey::SetCompressedPubKey(bool fCompressed)
|
||||
{
|
||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||
fCompressedPubKey = true;
|
||||
}
|
||||
// RAII Wrapper around OpenSSL's EC_KEY
|
||||
class CECKey {
|
||||
private:
|
||||
EC_KEY *pkey;
|
||||
|
||||
void CKey::Reset()
|
||||
{
|
||||
fCompressedPubKey = false;
|
||||
if (pkey != NULL)
|
||||
public:
|
||||
CECKey() {
|
||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||
assert(pkey != NULL);
|
||||
}
|
||||
|
||||
~CECKey() {
|
||||
EC_KEY_free(pkey);
|
||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||
if (pkey == NULL)
|
||||
throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed");
|
||||
fSet = false;
|
||||
}
|
||||
}
|
||||
|
||||
CKey::CKey()
|
||||
{
|
||||
pkey = NULL;
|
||||
Reset();
|
||||
}
|
||||
void GetSecretBytes(unsigned char vch[32]) const {
|
||||
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
|
||||
assert(bn);
|
||||
int nBytes = BN_num_bytes(bn);
|
||||
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
|
||||
assert(n == nBytes);
|
||||
memset(vch, 0, 32 - nBytes);
|
||||
}
|
||||
|
||||
CKey::CKey(const CKey& b)
|
||||
{
|
||||
pkey = EC_KEY_dup(b.pkey);
|
||||
if (pkey == NULL)
|
||||
throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed");
|
||||
fSet = b.fSet;
|
||||
}
|
||||
void SetSecretBytes(const unsigned char vch[32]) {
|
||||
BIGNUM bn;
|
||||
BN_init(&bn);
|
||||
assert(BN_bin2bn(vch, 32, &bn));
|
||||
assert(EC_KEY_regenerate_key(pkey, &bn));
|
||||
BN_clear_free(&bn);
|
||||
}
|
||||
|
||||
CKey& CKey::operator=(const CKey& b)
|
||||
{
|
||||
if (!EC_KEY_copy(pkey, b.pkey))
|
||||
throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed");
|
||||
fSet = b.fSet;
|
||||
return (*this);
|
||||
}
|
||||
void GetPrivKey(CPrivKey &privkey) {
|
||||
int nSize = i2d_ECPrivateKey(pkey, NULL);
|
||||
assert(nSize);
|
||||
privkey.resize(nSize);
|
||||
unsigned char* pbegin = &privkey[0];
|
||||
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin);
|
||||
assert(nSize == nSize2);
|
||||
}
|
||||
|
||||
CKey::~CKey()
|
||||
{
|
||||
EC_KEY_free(pkey);
|
||||
}
|
||||
|
||||
bool CKey::IsNull() const
|
||||
{
|
||||
return !fSet;
|
||||
}
|
||||
|
||||
bool CKey::IsCompressed() const
|
||||
{
|
||||
return fCompressedPubKey;
|
||||
}
|
||||
|
||||
void CKey::MakeNewKey(bool fCompressed)
|
||||
{
|
||||
if (!EC_KEY_generate_key(pkey))
|
||||
throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed");
|
||||
if (fCompressed)
|
||||
SetCompressedPubKey();
|
||||
fSet = true;
|
||||
}
|
||||
|
||||
bool CKey::SetPrivKey(const CPrivKey& vchPrivKey)
|
||||
{
|
||||
const unsigned char* pbegin = &vchPrivKey[0];
|
||||
if (d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size()))
|
||||
{
|
||||
// In testing, d2i_ECPrivateKey can return true
|
||||
// but fill in pkey with a key that fails
|
||||
// EC_KEY_check_key, so:
|
||||
if (EC_KEY_check_key(pkey))
|
||||
{
|
||||
fSet = true;
|
||||
return true;
|
||||
bool SetPrivKey(const CPrivKey &privkey) {
|
||||
const unsigned char* pbegin = &privkey[0];
|
||||
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) {
|
||||
// d2i_ECPrivateKey returns true if parsing succeeds.
|
||||
// This doesn't necessarily mean the key is valid.
|
||||
if (EC_KEY_check_key(pkey))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// If vchPrivKey data is bad d2i_ECPrivateKey() can
|
||||
// leave pkey in a state where calling EC_KEY_free()
|
||||
// crashes. To avoid that, set pkey to NULL and
|
||||
// leak the memory (a leak is better than a crash)
|
||||
pkey = NULL;
|
||||
Reset();
|
||||
return false;
|
||||
}
|
||||
|
||||
bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed)
|
||||
{
|
||||
EC_KEY_free(pkey);
|
||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||
if (pkey == NULL)
|
||||
throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed");
|
||||
if (vchSecret.size() != 32)
|
||||
throw key_error("CKey::SetSecret() : secret must be 32 bytes");
|
||||
BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new());
|
||||
if (bn == NULL)
|
||||
throw key_error("CKey::SetSecret() : BN_bin2bn failed");
|
||||
if (!EC_KEY_regenerate_key(pkey,bn))
|
||||
{
|
||||
BN_clear_free(bn);
|
||||
throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed");
|
||||
void GetPubKey(CPubKey &pubkey, bool fCompressed) {
|
||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||
int nSize = i2o_ECPublicKey(pkey, NULL);
|
||||
assert(nSize);
|
||||
assert(nSize <= 65);
|
||||
unsigned char c[65];
|
||||
unsigned char *pbegin = c;
|
||||
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
|
||||
assert(nSize == nSize2);
|
||||
pubkey.Set(&c[0], &c[nSize]);
|
||||
}
|
||||
BN_clear_free(bn);
|
||||
fSet = true;
|
||||
if (fCompressed || fCompressedPubKey)
|
||||
SetCompressedPubKey();
|
||||
return true;
|
||||
}
|
||||
|
||||
CSecret CKey::GetSecret(bool &fCompressed) const
|
||||
{
|
||||
CSecret vchRet;
|
||||
vchRet.resize(32);
|
||||
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
|
||||
int nBytes = BN_num_bytes(bn);
|
||||
if (bn == NULL)
|
||||
throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed");
|
||||
int n=BN_bn2bin(bn,&vchRet[32 - nBytes]);
|
||||
if (n != nBytes)
|
||||
throw key_error("CKey::GetSecret(): BN_bn2bin failed");
|
||||
fCompressed = fCompressedPubKey;
|
||||
return vchRet;
|
||||
}
|
||||
bool SetPubKey(const CPubKey &pubkey) {
|
||||
const unsigned char* pbegin = pubkey.begin();
|
||||
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size());
|
||||
}
|
||||
|
||||
CPrivKey CKey::GetPrivKey() const
|
||||
{
|
||||
int nSize = i2d_ECPrivateKey(pkey, NULL);
|
||||
if (!nSize)
|
||||
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed");
|
||||
CPrivKey vchPrivKey(nSize, 0);
|
||||
unsigned char* pbegin = &vchPrivKey[0];
|
||||
if (i2d_ECPrivateKey(pkey, &pbegin) != nSize)
|
||||
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size");
|
||||
return vchPrivKey;
|
||||
}
|
||||
|
||||
bool CKey::SetPubKey(const CPubKey& vchPubKey)
|
||||
{
|
||||
const unsigned char* pbegin = vchPubKey.begin();
|
||||
if (o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.size()))
|
||||
{
|
||||
fSet = true;
|
||||
if (vchPubKey.size() == 33)
|
||||
SetCompressedPubKey();
|
||||
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) {
|
||||
unsigned int nSize = ECDSA_size(pkey);
|
||||
vchSig.resize(nSize); // Make sure it is big enough
|
||||
assert(ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey));
|
||||
vchSig.resize(nSize); // Shrink to fit actual size
|
||||
return true;
|
||||
}
|
||||
pkey = NULL;
|
||||
Reset();
|
||||
return false;
|
||||
}
|
||||
|
||||
CPubKey CKey::GetPubKey() const
|
||||
{
|
||||
int nSize = i2o_ECPublicKey(pkey, NULL);
|
||||
if (!nSize)
|
||||
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed");
|
||||
assert(nSize <= 65);
|
||||
CPubKey ret;
|
||||
unsigned char *pbegin = ret.begin();
|
||||
if (i2o_ECPublicKey(pkey, &pbegin) != nSize)
|
||||
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
|
||||
assert((int)ret.size() == nSize);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool CKey::Sign(uint256 hash, std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
unsigned int nSize = ECDSA_size(pkey);
|
||||
vchSig.resize(nSize); // Make sure it is big enough
|
||||
if (!ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey))
|
||||
{
|
||||
vchSig.clear();
|
||||
return false;
|
||||
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
||||
// -1 = error, 0 = bad sig, 1 = good
|
||||
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
|
||||
bool fOk = false;
|
||||
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
||||
if (sig==NULL)
|
||||
return false;
|
||||
memset(p64, 0, 64);
|
||||
int nBitsR = BN_num_bits(sig->r);
|
||||
int nBitsS = BN_num_bits(sig->s);
|
||||
if (nBitsR <= 256 && nBitsS <= 256) {
|
||||
CPubKey pubkey;
|
||||
GetPubKey(pubkey, true);
|
||||
for (int i=0; i<4; i++) {
|
||||
CECKey keyRec;
|
||||
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
|
||||
CPubKey pubkeyRec;
|
||||
keyRec.GetPubKey(pubkeyRec, true);
|
||||
if (pubkeyRec == pubkey) {
|
||||
rec = i;
|
||||
fOk = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(fOk);
|
||||
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
|
||||
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
|
||||
}
|
||||
ECDSA_SIG_free(sig);
|
||||
return fOk;
|
||||
}
|
||||
|
||||
// reconstruct public key from a compact signature
|
||||
// This is only slightly more CPU intensive than just verifying it.
|
||||
// If this function succeeds, the recovered public key is guaranteed to be valid
|
||||
// (the signature is a valid signature of the given data for that key)
|
||||
bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
|
||||
{
|
||||
if (rec<0 || rec>=3)
|
||||
return false;
|
||||
ECDSA_SIG *sig = ECDSA_SIG_new();
|
||||
BN_bin2bn(&p64[0], 32, sig->r);
|
||||
BN_bin2bn(&p64[32], 32, sig->s);
|
||||
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
|
||||
ECDSA_SIG_free(sig);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
}; // end of anonymous namespace
|
||||
|
||||
bool CKey::Check(const unsigned char *vch) {
|
||||
// Do not convert to OpenSSL's data structures for range-checking keys,
|
||||
// it's easy enough to do directly.
|
||||
static const unsigned char vchMax[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
||||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
|
||||
};
|
||||
bool fIsZero = true;
|
||||
for (int i=0; i<32 && fIsZero; i++)
|
||||
if (vch[i] != 0)
|
||||
fIsZero = false;
|
||||
if (fIsZero)
|
||||
return false;
|
||||
for (int i=0; i<32; i++) {
|
||||
if (vch[i] < vchMax[i])
|
||||
return true;
|
||||
if (vch[i] > vchMax[i])
|
||||
return false;
|
||||
}
|
||||
vchSig.resize(nSize); // Shrink to fit actual size
|
||||
return true;
|
||||
}
|
||||
|
||||
// create a compact signature (65 bytes), which allows reconstructing the used public key
|
||||
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
|
||||
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
|
||||
// 0x1D = second key with even y, 0x1E = second key with odd y
|
||||
bool CKey::SignCompact(uint256 hash, std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
bool fOk = false;
|
||||
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
||||
if (sig==NULL)
|
||||
return false;
|
||||
vchSig.clear();
|
||||
vchSig.resize(65,0);
|
||||
int nBitsR = BN_num_bits(sig->r);
|
||||
int nBitsS = BN_num_bits(sig->s);
|
||||
if (nBitsR <= 256 && nBitsS <= 256)
|
||||
{
|
||||
int nRecId = -1;
|
||||
for (int i=0; i<4; i++)
|
||||
{
|
||||
CKey keyRec;
|
||||
keyRec.fSet = true;
|
||||
if (fCompressedPubKey)
|
||||
keyRec.SetCompressedPubKey();
|
||||
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1)
|
||||
if (keyRec.GetPubKey() == this->GetPubKey())
|
||||
{
|
||||
nRecId = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nRecId == -1)
|
||||
{
|
||||
ECDSA_SIG_free(sig);
|
||||
throw key_error("CKey::SignCompact() : unable to construct recoverable key");
|
||||
}
|
||||
|
||||
vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0);
|
||||
BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]);
|
||||
BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]);
|
||||
fOk = true;
|
||||
}
|
||||
ECDSA_SIG_free(sig);
|
||||
return fOk;
|
||||
void CKey::MakeNewKey(bool fCompressedIn) {
|
||||
do {
|
||||
RAND_bytes(vch, sizeof(vch));
|
||||
} while (!Check(vch));
|
||||
fValid = true;
|
||||
fCompressed = fCompressedIn;
|
||||
}
|
||||
|
||||
// reconstruct public key from a compact signature
|
||||
// This is only slightly more CPU intensive than just verifying it.
|
||||
// If this function succeeds, the recovered public key is guaranteed to be valid
|
||||
// (the signature is a valid signature of the given data for that key)
|
||||
bool CKey::SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
|
||||
CECKey key;
|
||||
if (!key.SetPrivKey(privkey))
|
||||
return false;
|
||||
key.GetSecretBytes(vch);
|
||||
fCompressed = fCompressedIn;
|
||||
fValid = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
CPrivKey CKey::GetPrivKey() const {
|
||||
assert(fValid);
|
||||
CECKey key;
|
||||
key.SetSecretBytes(vch);
|
||||
CPrivKey privkey;
|
||||
key.GetPrivKey(privkey);
|
||||
return privkey;
|
||||
}
|
||||
|
||||
CPubKey CKey::GetPubKey() const {
|
||||
assert(fValid);
|
||||
CECKey key;
|
||||
key.SetSecretBytes(vch);
|
||||
CPubKey pubkey;
|
||||
key.GetPubKey(pubkey, fCompressed);
|
||||
return pubkey;
|
||||
}
|
||||
|
||||
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
||||
if (!fValid)
|
||||
return false;
|
||||
CECKey key;
|
||||
key.SetSecretBytes(vch);
|
||||
return key.Sign(hash, vchSig);
|
||||
}
|
||||
|
||||
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
|
||||
if (!fValid)
|
||||
return false;
|
||||
CECKey key;
|
||||
key.SetSecretBytes(vch);
|
||||
vchSig.resize(65);
|
||||
int rec = -1;
|
||||
if (!key.SignCompact(hash, &vchSig[1], rec))
|
||||
return false;
|
||||
assert(rec != -1);
|
||||
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(*this))
|
||||
return false;
|
||||
if (!key.Verify(hash, vchSig))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
||||
if (vchSig.size() != 65)
|
||||
return false;
|
||||
int nV = vchSig[0];
|
||||
if (nV<27 || nV>=35)
|
||||
CECKey key;
|
||||
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
|
||||
return false;
|
||||
ECDSA_SIG *sig = ECDSA_SIG_new();
|
||||
BN_bin2bn(&vchSig[1],32,sig->r);
|
||||
BN_bin2bn(&vchSig[33],32,sig->s);
|
||||
|
||||
EC_KEY_free(pkey);
|
||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||
if (nV >= 31)
|
||||
{
|
||||
SetCompressedPubKey();
|
||||
nV -= 4;
|
||||
}
|
||||
if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1)
|
||||
{
|
||||
fSet = true;
|
||||
ECDSA_SIG_free(sig);
|
||||
return true;
|
||||
}
|
||||
ECDSA_SIG_free(sig);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool CKey::Verify(uint256 hash, const std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
// -1 = error, 0 = bad sig, 1 = good
|
||||
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
|
||||
return false;
|
||||
|
||||
key.GetPubKey(*this, (vchSig[0] - 27) & 4);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CKey::VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
CKey key;
|
||||
if (!key.SetCompactSignature(hash, vchSig))
|
||||
bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
if (GetPubKey() != key.GetPubKey())
|
||||
if (vchSig.size() != 65)
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
|
||||
return false;
|
||||
CPubKey pubkeyRec;
|
||||
key.GetPubKey(pubkeyRec, IsCompressed());
|
||||
if (*this != pubkeyRec)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CKey::IsValid()
|
||||
{
|
||||
if (!fSet)
|
||||
bool CPubKey::IsFullyValid() const {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
|
||||
if (!EC_KEY_check_key(pkey))
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(*this))
|
||||
return false;
|
||||
|
||||
bool fCompr;
|
||||
CSecret secret = GetSecret(fCompr);
|
||||
CKey key2;
|
||||
key2.SetSecret(secret, fCompr);
|
||||
return GetPubKey() == key2.GetPubKey();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CPubKey::Decompress() {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(*this))
|
||||
return false;
|
||||
key.GetPubKey(*this, false);
|
||||
return true;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user