miniscript: convert non-critical asserts to CHECK_NONFATAL

The Miniscript code contains assertions to prevent ending up in an insane state or prevent UB, but
also to enforce logical invariants. For the latter it is not necessary to crash the program if they
are broken. Raising an exception suffices, especially as this code is often called through the RPC
interface which can in turn handle the exception and the user can report it to developers.

This is based on previous work from Pieter Wuille.
This commit is contained in:
Antoine Poinsot
2025-01-23 10:48:23 -05:00
parent 5acf12bafe
commit ff0194a7ce
2 changed files with 54 additions and 51 deletions

View File

@@ -19,20 +19,20 @@ namespace internal {
Type SanitizeType(Type e) { Type SanitizeType(Type e) {
int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst); int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst);
if (num_types == 0) return ""_mst; // No valid type, don't care about the rest if (num_types == 0) return ""_mst; // No valid type, don't care about the rest
assert(num_types == 1); // K, V, B, W all conflict with each other CHECK_NONFATAL(num_types == 1); // K, V, B, W all conflict with each other
assert(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o CHECK_NONFATAL(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o
assert(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z CHECK_NONFATAL(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z
assert(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W CHECK_NONFATAL(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W
assert(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d CHECK_NONFATAL(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d
assert(!(e << "K"_mst) || (e << "u"_mst)); // K implies u CHECK_NONFATAL(!(e << "K"_mst) || (e << "u"_mst)); // K implies u
assert(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u CHECK_NONFATAL(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u
assert(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f CHECK_NONFATAL(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f
assert(!(e << "e"_mst) || (e << "d"_mst)); // e implies d CHECK_NONFATAL(!(e << "e"_mst) || (e << "d"_mst)); // e implies d
assert(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e CHECK_NONFATAL(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e
assert(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f CHECK_NONFATAL(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f
assert(!(e << "V"_mst) || (e << "f"_mst)); // V implies f CHECK_NONFATAL(!(e << "V"_mst) || (e << "f"_mst)); // V implies f
assert(!(e << "K"_mst) || (e << "s"_mst)); // K implies s CHECK_NONFATAL(!(e << "K"_mst) || (e << "s"_mst)); // K implies s
assert(!(e << "z"_mst) || (e << "m"_mst)); // z implies m CHECK_NONFATAL(!(e << "z"_mst) || (e << "m"_mst)); // z implies m
return e; return e;
} }
@@ -40,46 +40,46 @@ Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Ty
size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx) { size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx) {
// Sanity check on data // Sanity check on data
if (fragment == Fragment::SHA256 || fragment == Fragment::HASH256) { if (fragment == Fragment::SHA256 || fragment == Fragment::HASH256) {
assert(data_size == 32); CHECK_NONFATAL(data_size == 32);
} else if (fragment == Fragment::RIPEMD160 || fragment == Fragment::HASH160) { } else if (fragment == Fragment::RIPEMD160 || fragment == Fragment::HASH160) {
assert(data_size == 20); CHECK_NONFATAL(data_size == 20);
} else { } else {
assert(data_size == 0); CHECK_NONFATAL(data_size == 0);
} }
// Sanity check on k // Sanity check on k
if (fragment == Fragment::OLDER || fragment == Fragment::AFTER) { if (fragment == Fragment::OLDER || fragment == Fragment::AFTER) {
assert(k >= 1 && k < 0x80000000UL); CHECK_NONFATAL(k >= 1 && k < 0x80000000UL);
} else if (fragment == Fragment::MULTI || fragment == Fragment::MULTI_A) { } else if (fragment == Fragment::MULTI || fragment == Fragment::MULTI_A) {
assert(k >= 1 && k <= n_keys); CHECK_NONFATAL(k >= 1 && k <= n_keys);
} else if (fragment == Fragment::THRESH) { } else if (fragment == Fragment::THRESH) {
assert(k >= 1 && k <= n_subs); CHECK_NONFATAL(k >= 1 && k <= n_subs);
} else { } else {
assert(k == 0); CHECK_NONFATAL(k == 0);
} }
// Sanity check on subs // Sanity check on subs
if (fragment == Fragment::AND_V || fragment == Fragment::AND_B || fragment == Fragment::OR_B || if (fragment == Fragment::AND_V || fragment == Fragment::AND_B || fragment == Fragment::OR_B ||
fragment == Fragment::OR_C || fragment == Fragment::OR_I || fragment == Fragment::OR_D) { fragment == Fragment::OR_C || fragment == Fragment::OR_I || fragment == Fragment::OR_D) {
assert(n_subs == 2); CHECK_NONFATAL(n_subs == 2);
} else if (fragment == Fragment::ANDOR) { } else if (fragment == Fragment::ANDOR) {
assert(n_subs == 3); CHECK_NONFATAL(n_subs == 3);
} else if (fragment == Fragment::WRAP_A || fragment == Fragment::WRAP_S || fragment == Fragment::WRAP_C || } else if (fragment == Fragment::WRAP_A || fragment == Fragment::WRAP_S || fragment == Fragment::WRAP_C ||
fragment == Fragment::WRAP_D || fragment == Fragment::WRAP_V || fragment == Fragment::WRAP_J || fragment == Fragment::WRAP_D || fragment == Fragment::WRAP_V || fragment == Fragment::WRAP_J ||
fragment == Fragment::WRAP_N) { fragment == Fragment::WRAP_N) {
assert(n_subs == 1); CHECK_NONFATAL(n_subs == 1);
} else if (fragment != Fragment::THRESH) { } else if (fragment != Fragment::THRESH) {
assert(n_subs == 0); CHECK_NONFATAL(n_subs == 0);
} }
// Sanity check on keys // Sanity check on keys
if (fragment == Fragment::PK_K || fragment == Fragment::PK_H) { if (fragment == Fragment::PK_K || fragment == Fragment::PK_H) {
assert(n_keys == 1); CHECK_NONFATAL(n_keys == 1);
} else if (fragment == Fragment::MULTI) { } else if (fragment == Fragment::MULTI) {
assert(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTISIG); CHECK_NONFATAL(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTISIG);
assert(!IsTapscript(ms_ctx)); CHECK_NONFATAL(!IsTapscript(ms_ctx));
} else if (fragment == Fragment::MULTI_A) { } else if (fragment == Fragment::MULTI_A) {
assert(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTI_A); CHECK_NONFATAL(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTI_A);
assert(IsTapscript(ms_ctx)); CHECK_NONFATAL(IsTapscript(ms_ctx));
} else { } else {
assert(n_keys == 0); CHECK_NONFATAL(n_keys == 0);
} }
// Below is the per-fragment logic for computing the expression types. // Below is the per-fragment logic for computing the expression types.

View File

@@ -659,7 +659,8 @@ private:
stack.pop_back(); stack.pop_back();
} }
// The final remaining results element is the root result, return it. // The final remaining results element is the root result, return it.
assert(results.size() == 1); assert(results.size() >= 1);
CHECK_NONFATAL(results.size() == 1);
return std::move(results[0]); return std::move(results[0]);
} }
@@ -1225,7 +1226,7 @@ private:
// The dissatisfaction consists of as many empty vectors as there are keys, which is the same as // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
// satisfying 0 keys. // satisfying 0 keys.
auto& nsat{sats[0]}; auto& nsat{sats[0]};
assert(node.k != 0); CHECK_NONFATAL(node.k != 0);
assert(node.k <= sats.size()); assert(node.k <= sats.size());
return {std::move(nsat), std::move(sats[node.k])}; return {std::move(nsat), std::move(sats[node.k])};
} }
@@ -1392,38 +1393,38 @@ private:
// (the actual satisfaction code in ProduceInputHelper does not use GetType) // (the actual satisfaction code in ProduceInputHelper does not use GetType)
// For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0. // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0); if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0);
if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0); if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0);
// For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1. // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1); if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1);
if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1); if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1);
// For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions, // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
// the top element cannot be 0. // the top element cannot be 0.
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1); if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1);
if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1); if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1);
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty()); if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty());
// For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable, // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
// it must be canonical. // it must be canonical.
if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO); if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig); if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig);
if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon); if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon);
// For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature. // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig); if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig);
if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig); if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig);
// For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist. // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO); if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable); if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable);
// For 'm' nodes, if a satisfaction exists, it must be non-malleable. // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable); if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable);
// If a non-malleable satisfaction exists, it must be canonical. // If a non-malleable satisfaction exists, it must be canonical.
if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon); if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon);
return ret; return ret;
}; };
@@ -1604,7 +1605,8 @@ public:
case Fragment::THRESH: case Fragment::THRESH:
return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k; return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
default: // wrappers default: // wrappers
assert(subs.size() == 1); assert(subs.size() >= 1);
CHECK_NONFATAL(subs.size() == 1);
return subs[0]; return subs[0];
} }
}); });
@@ -2157,7 +2159,8 @@ inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
} }
// Sanity checks on the produced miniscript // Sanity checks on the produced miniscript
assert(constructed.size() == 1); assert(constructed.size() >= 1);
CHECK_NONFATAL(constructed.size() == 1);
assert(constructed[0]->ScriptSize() == script_size); assert(constructed[0]->ScriptSize() == script_size);
if (in.size() > 0) return {}; if (in.size() > 0) return {};
NodeRef<Key> tl_node = std::move(constructed.front()); NodeRef<Key> tl_node = std::move(constructed.front());