MeshCollider 5e202382a9
Merge #16624: wallet: encapsulate transactions state
442a87cc0ae43ebc9b6654a6165778eecb931f74 Add a test wallet_reorgsrestore (Antoine Riard)
40ede992d97df38282919693dfe851c975c3b1d8 Modify wallet tx status if has been reorged out (Antoine Riard)
7e89994133725125dddbfa8d45484e3b9ed51c6e Remove SyncTransaction for conflicted txn in CWallet::BlockConnected (Antoine Riard)
a31be09bfd77eed497a8e251d31358e16e2f2eb1 Encapsulate tx status in a Confirmation struct (Antoine Riard)

Pull request description:

  While working on #15931, I've tried to rationalize tx state management to ease integration of block height tracking per-wallet tx. We currently rely on a combination of `hashBlock` and `nIndex` with magic value to determine tx confirmation, conflicted or abandoned state. It's hard to reason and error-prone.  To solve that, we encapsulate these fields in a `TxConfirmation` struct and introduce a `TxState` member that we update accordingly at block connection/disconnection.

  Following jnewbery [recommendation](https://github.com/bitcoin/bitcoin/pull/15931#discussion_r312576506), I've taken these changes in its own commit, and open a PR to get them first. It would ease review of aforementioned PR, but above all should ease fixing of long-term issues like :
  * https://github.com/bitcoin/bitcoin/issues/7315 (but maybe we should abandon abandontransaction or relieve it to only free outpoints not track the transaction as abandoned in itself, need its own discussion)
  * https://github.com/bitcoin/bitcoin/issues/8692 where we should cancel conflicted state of transactions chain smoothly
  * `MarkConflicted` in `LoadToWallet` is likely useless if we track conflicts rights at block connection

  Main changes of this PR to get right are tx update in `AddToWallet` and serialization/deserialization logic.

ACKs for top commit:
  meshcollider:
    Light re-Code Review ACK 442a87cc0ae43ebc9b6654a6165778eecb931f74
  ryanofsky:
    utACK 442a87cc0ae43ebc9b6654a6165778eecb931f74. Changes since last review are switching from `hasChain` to `LockChain` and removing chain lock in `WalletBatch::LoadWallet` that's redundant with the new lock still added in `CWallet::LoadWallet`, and fixing python test race condition.

Tree-SHA512: 029209e006de0240436817204e69e548c5665e2b0721b214510e7aba7eba130a5eab441d3a1ad95bd6426114dd27390492c77bf4560a9610009b32cd0a1f72f7
2019-09-06 01:28:54 +12:00
..
2019-04-09 12:10:35 -04:00
2019-08-17 00:43:37 +09:00
2019-04-09 12:10:35 -04:00
2019-08-29 12:01:51 -04:00
2019-04-09 12:10:35 -04:00

Functional tests

Writing Functional Tests

Example test

The example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The Travis linter also checks this, but possibly not in all cases.
  • See the python lint script that checks for violations that could lead to bugs and issues in the test code.
  • Avoid wildcard imports
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramwork, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.
  • Use '{}'.format(x) for string formatting, not '%s' % x.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • tool for tests for tools, eg tool_wallet.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel or on Travis).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to control whether or not to use the cached data directories. The cached data directories contain a 200-block pre-mined blockchain and wallets for four nodes. Each node has 25 mature blocks (25x50=1250 BTC) in its wallet.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
  • Many of the core test framework classes such as CBlock and CTransaction don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • messages.py contains all the definitions for objects that pass over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the bitcoind(s) being tested in a callback-based event loop; the other implements the test logic.

  • P2PConnection is the class used to connect to a bitcoind. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

  • Can be used to write tests where specific P2P protocol behavior is tested. Examples tests are p2p_unrequested_blocks.py, p2p_compactblocks.py.

test-framework modules

test_framework/authproxy.py

Taken from the python-bitcoinrpc repository.

test_framework/test_framework.py

Base class for functional tests.

test_framework/util.py

Generally useful functions.

test_framework/mininode.py

Basic code to support P2P connectivity to a bitcoind.

test_framework/script.py

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

test_framework/key.py

Wrapper around OpenSSL EC_Key (originally from python-bitcoinlib)

test_framework/bignum.py

Helpers for script.py

test_framework/blocktools.py

Helper functions for creating blocks and transactions.

Benchmarking with perf

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

There are two ways of invoking perf: one is to use the --perf flag when running tests, which will profile each node during the entire test run: perf begins to profile when the node starts and ends when it shuts down. The other way is the use the profile_with_perf context manager, e.g.

with node.profile_with_perf("send-big-msgs"):
    # Perform activity on the node you're interested in profiling, e.g.:
    for _ in range(10000):
        node.p2p.send_message(some_large_message)

To see useful textual output, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

See also: