bitcoin/src/secp256k1/src/scalar_low_impl.h
2024-11-04 14:59:46 -05:00

207 lines
5.7 KiB
C

/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
#include "checkmem.h"
#include "scalar.h"
#include "util.h"
#include <string.h>
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(*a & 1);
}
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
*r = v % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count > 0 && count <= 32);
if (offset < 32) {
return (*a >> offset) & (0xFFFFFFFF >> (32 - count));
} else {
return 0;
}
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
return secp256k1_scalar_get_bits_limb32(a, offset, count);
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; }
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
*r = (*a + *b) % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
return *r < *b;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
SECP256K1_SCALAR_VERIFY(r);
if (flag && bit < 32)
*r += ((uint32_t)1 << bit);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 32);
/* Verify that adding (1 << bit) will not overflow any in-range scalar *r by overflowing the underlying uint32_t. */
VERIFY_CHECK(((uint32_t)1 << bit) - 1 <= UINT32_MAX - EXHAUSTIVE_TEST_ORDER);
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int i;
int over = 0;
*r = 0;
for (i = 0; i < 32; i++) {
*r = (*r * 0x100) + b32[i];
if (*r >= EXHAUSTIVE_TEST_ORDER) {
over = 1;
*r %= EXHAUSTIVE_TEST_ORDER;
}
}
if (overflow) *overflow = over;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
SECP256K1_SCALAR_VERIFY(a);
memset(bin, 0, 32);
bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a;
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
if (*a == 0) {
*r = 0;
} else {
*r = EXHAUSTIVE_TEST_ORDER - *a;
}
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a == 1;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a > EXHAUSTIVE_TEST_ORDER / 2;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
SECP256K1_SCALAR_VERIFY(r);
if (flag) secp256k1_scalar_negate(r, r);
SECP256K1_SCALAR_VERIFY(r);
return flag ? -1 : 1;
}
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
*r = (*a * *b) % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
*r1 = *a;
*r2 = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return *a == *b;
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint32_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r, sizeof(*r));
mask0 = vflag + ~((uint32_t)0);
mask1 = ~mask0;
*r = (*r & mask0) | (*a & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
int i;
uint32_t res = 0;
SECP256K1_SCALAR_VERIFY(x);
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) {
res = i;
break;
}
}
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
* have a composite group order; fix it in exhaustive_tests.c). */
VERIFY_CHECK(res != 0);
*r = res;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_inverse(r, x);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
*r = (*a + ((-(uint32_t)(*a & 1)) & EXHAUSTIVE_TEST_ORDER)) >> 1;
SECP256K1_SCALAR_VERIFY(r);
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */