Files
bitcoin/test/functional
fanquake e9035f867a Merge bitcoin/bitcoin#25717: p2p: Implement anti-DoS headers sync
3add234546 ui: show header pre-synchronization progress (Pieter Wuille)
738421c50f Emit NotifyHeaderTip signals for pre-synchronization progress (Pieter Wuille)
376086fc5a Make validation interface capable of signalling header presync (Pieter Wuille)
93eae27031 Test large reorgs with headerssync logic (Suhas Daftuar)
355547334f Track headers presync progress and log it (Pieter Wuille)
03712dddfb Expose HeadersSyncState::m_current_height in getpeerinfo() (Suhas Daftuar)
150a5486db Test headers sync using minchainwork threshold (Suhas Daftuar)
0b6aa826b5 Add unit test for HeadersSyncState (Suhas Daftuar)
83c6a0c524 Reduce spurious messages during headers sync (Suhas Daftuar)
ed6cddd98e Require callers of AcceptBlockHeader() to perform anti-dos checks (Suhas Daftuar)
551a8d957c Utilize anti-DoS headers download strategy (Suhas Daftuar)
ed470940cd Add functions to construct locators without CChain (Pieter Wuille)
84852bb6bb Add bitdeque, an std::deque<bool> analogue that does bit packing. (Pieter Wuille)
1d4cfa4272 Add function to validate difficulty changes (Suhas Daftuar)

Pull request description:

  New nodes starting up for the first time lack protection against DoS from low-difficulty headers. While checkpoints serve as our protection against headers that fork from the main chain below the known checkpointed values, this protection only applies to nodes that have been able to download the honest chain to the checkpointed heights.

  We can protect all nodes from DoS from low-difficulty headers by adopting a different strategy: before we commit to storing a header in permanent storage, first verify that the header is part of a chain that has sufficiently high work (either `nMinimumChainWork`, or something comparable to our tip). This means that we will download headers from a given peer twice: once to verify the work on the chain, and a second time when permanently storing the headers.

  The p2p protocol doesn't provide an easy way for us to ensure that we receive the same headers during the second download of peer's headers chain. To ensure that a peer doesn't (say) give us the main chain in phase 1 to trick us into permanently storing an alternate, low-work chain in phase 2, we store commitments to the headers during our first download, which we validate in the second download.

  Some parameters must be chosen for commitment size/frequency in phase 1, and validation of commitments in phase 2. In this PR, those parameters are chosen to both (a) minimize the per-peer memory usage that an attacker could utilize, and (b) bound the expected amount of permanent memory that an attacker could get us to use to be well-below the memory growth that we'd get from the honest chain (where we expect 1 new block header every 10 minutes).

  After this PR, we should be able to remove checkpoints from our code, which is a nice philosophical change for us to make as well, as there has been confusion over the years about the role checkpoints play in Bitcoin's consensus algorithm.

  Thanks to Pieter Wuille for collaborating on this design.

ACKs for top commit:
  Sjors:
    re-tACK 3add234546
  mzumsande:
    re-ACK 3add234546
  sipa:
    re-ACK 3add234546
  glozow:
    ACK 3add234546

Tree-SHA512: e7789d65f62f72141b8899eb4a2fb3d0621278394d2d7adaa004675250118f89a4e4cb42777fe56649d744ec445ad95141e10f6def65f0a58b7b35b2e654a875
2022-08-30 15:37:59 +01:00
..
2022-07-15 11:46:34 -04:00
2022-08-02 15:23:24 +02:00
2022-05-14 10:22:16 +02:00
2022-04-30 12:53:35 +02:00

Functional tests

Writing Functional Tests

Example test

The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test/functional/test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The CI linter job also checks this, but possibly not in all cases.
  • See the python lint script that checks for violations that could lead to bugs and issues in the test code.
  • Use type hints in your code to improve code readability and to detect possible bugs earlier.
  • Avoid wildcard imports.
  • If more than one name from a module is needed, use lexicographically sorted multi-line imports in order to reduce the possibility of potential merge conflicts.
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramework, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.
  • Use f'{x}' for string formatting in preference to '{}'.format(x) or '%s' % x.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • tool for tests for tools, eg tool_wallet.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • Use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Instead of inline comments or no test documentation at all, log the comments to the test log, e.g. self.log.info('Create enough transactions to fill a block'). Logs make the test code easier to read and the test logic easier to debug.
  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to True to initialize an empty blockchain and start from the Genesis block, rather than load a premined blockchain from cache with the default value of False. The cached data directories contain a 200-block pre-mined blockchain with the spendable mining rewards being split between four nodes. Each node has 25 mature block subsidies (25x50=1250 BTC) in its wallet. Using them is much more efficient than mining blocks in your test.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
  • Many of the core test framework classes such as CBlock and CTransaction don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • P2Ps can be used to test specific P2P protocol behavior. p2p.py contains test framework p2p objects and messages.py contains all the definitions for objects passed over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the bitcoind(s) being tested in a callback-based event loop; the other implements the test logic.

  • P2PConnection is the class used to connect to a bitcoind. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

P2PConnections can be used as such:

p2p_conn = node.add_p2p_connection(P2PInterface())
p2p_conn.send_and_ping(msg)

They can also be referenced by indexing into a TestNode's p2ps list, which contains the list of test framework p2p objects connected to itself (it does not include any TestNodes):

node.p2ps[0].sync_with_ping()

More examples can be found in p2p_unrequested_blocks.py, p2p_compactblocks.py.

Prototyping tests

The TestShell class exposes the BitcoinTestFramework functionality to interactive Python3 environments and can be used to prototype tests. This may be especially useful in a REPL environment with session logging utilities, such as IPython. The logs of such interactive sessions can later be adapted into permanent test cases.

Test framework modules

The following are useful modules for test developers. They are located in test/functional/test_framework/.

authproxy.py

Taken from the python-bitcoinrpc repository.

test_framework.py

Base class for functional tests.

util.py

Generally useful functions.

p2p.py

Test objects for interacting with a bitcoind node over the p2p interface.

script.py

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

key.py

Test-only secp256k1 elliptic curve implementation

blocktools.py

Helper functions for creating blocks and transactions.

Benchmarking with perf

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

There are two ways of invoking perf: one is to use the --perf flag when running tests, which will profile each node during the entire test run: perf begins to profile when the node starts and ends when it shuts down. The other way is the use the profile_with_perf context manager, e.g.

with node.profile_with_perf("send-big-msgs"):
    # Perform activity on the node you're interested in profiling, e.g.:
    for _ in range(10000):
        node.p2ps[0].send_message(some_large_message)

To see useful textual output, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

See also: