Files
bitcoin/test/functional/p2p_1p1c_network.py
glozow f24771af05 relax child-with-unconfirmed-parents rule
This rule was originally introduced along with a very early proposal for
package relay as a way to verify that the "correct"
child-with-unconfirmed-parents package was provided for a transaction,
where correctness was defined as all of the transactions unconfirmed
parents. However, we are not planning to introduce a protocol where
peers would be asked to send these packages.

This rule has downsides: if a transaction has multiple parents but only
1 that requires package CPFP to be accepted, the current rule prevents
us from accepting that package. Even if the other parents are already in
mempool, the p2p logic will only submit the 1p1c package, which fails
this check. See the test in p2p_1p1c_network.py
2025-07-24 09:44:48 -04:00

161 lines
6.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2024-present The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""
Test that 1p1c package submission allows a 1p1c package to propagate in a "network" of nodes. Send
various packages from different nodes on a network in which some nodes have already received some of
the transactions (and submitted them to mempool, kept them as orphans or rejected them as
too-low-feerate transactions). The packages should be received and accepted by all nodes.
"""
from decimal import Decimal
from math import ceil
from test_framework.mempool_util import (
fill_mempool,
)
from test_framework.messages import (
msg_tx,
)
from test_framework.p2p import (
P2PInterface,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_greater_than,
)
from test_framework.wallet import (
MiniWallet,
MiniWalletMode,
)
# 1sat/vB feerate denominated in BTC/KvB
FEERATE_1SAT_VB = Decimal("0.00001000")
class PackageRelayTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 4
# hugely speeds up the test, as it involves multiple hops of tx relay.
self.noban_tx_relay = True
self.extra_args = [[
"-maxmempool=5",
]] * self.num_nodes
def raise_network_minfee(self):
fill_mempool(self, self.nodes[0])
self.log.debug("Check that all nodes' mempool minimum feerates are above min relay feerate")
for node in self.nodes:
assert_equal(node.getmempoolinfo()['minrelaytxfee'], FEERATE_1SAT_VB)
assert_greater_than(node.getmempoolinfo()['mempoolminfee'], FEERATE_1SAT_VB)
def create_basic_1p1c(self, wallet):
low_fee_parent = wallet.create_self_transfer(fee_rate=FEERATE_1SAT_VB, confirmed_only=True)
high_fee_child = wallet.create_self_transfer(utxo_to_spend=low_fee_parent["new_utxo"], fee_rate=999*FEERATE_1SAT_VB)
package_hex_basic = [low_fee_parent["hex"], high_fee_child["hex"]]
return package_hex_basic, low_fee_parent["tx"], high_fee_child["tx"]
def create_package_2outs(self, wallet):
# First create a tester tx to see the vsize, and then adjust the fees
utxo_for_2outs = wallet.get_utxo(confirmed_only=True)
low_fee_parent_2outs_tester = wallet.create_self_transfer_multi(
utxos_to_spend=[utxo_for_2outs],
num_outputs=2,
)
# Target 1sat/vB so the number of satoshis is equal to the vsize.
# Round up. The goal is to be between min relay feerate and mempool min feerate.
fee_2outs = ceil(low_fee_parent_2outs_tester["tx"].get_vsize() / 2)
low_fee_parent_2outs = wallet.create_self_transfer_multi(
utxos_to_spend=[utxo_for_2outs],
num_outputs=2,
fee_per_output=fee_2outs,
)
# Now create the child
high_fee_child_2outs = wallet.create_self_transfer_multi(
utxos_to_spend=low_fee_parent_2outs["new_utxos"][::-1],
fee_per_output=fee_2outs*100,
)
return [low_fee_parent_2outs["hex"], high_fee_child_2outs["hex"]], low_fee_parent_2outs["tx"], high_fee_child_2outs["tx"]
def create_package_2p1c(self, wallet):
parent1 = wallet.create_self_transfer(fee_rate=FEERATE_1SAT_VB*10, confirmed_only=True)
parent2 = wallet.create_self_transfer(fee_rate=FEERATE_1SAT_VB*20, confirmed_only=True)
child = wallet.create_self_transfer_multi(
utxos_to_spend=[parent1["new_utxo"], parent2["new_utxo"]],
fee_per_output=999*parent1["tx"].get_vsize(),
)
return [parent1["hex"], parent2["hex"], child["hex"]], parent1["tx"], parent2["tx"], child["tx"]
def create_packages(self):
# 1: Basic 1-parent-1-child package, parent 1sat/vB, child 999sat/vB
package_hex_1, parent_1, child_1 = self.create_basic_1p1c(self.wallet)
# 2: same as 1, parent's txid is the same as its wtxid.
package_hex_2, parent_2, child_2 = self.create_basic_1p1c(self.wallet_nonsegwit)
# 3: 2-parent-1-child package. Both parents are above mempool min feerate. No package submission happens.
# We require packages to be child-with-parents and only allow 1-parent-1-child packages.
package_hex_3, parent_31, _parent_32, child_3 = self.create_package_2p1c(self.wallet)
# 4: parent + child package where the child spends 2 different outputs from the parent.
package_hex_4, parent_4, child_4 = self.create_package_2outs(self.wallet)
# Assemble return results
packages_to_submit = [package_hex_1, package_hex_2, package_hex_3, package_hex_4]
# node0: sender
# node1: pre-received the children (orphan)
# node3: pre-received the parents (too low fee)
# All nodes receive parent_31 ahead of time.
txns_to_send = [
[],
[child_1, child_2, parent_31, child_3, child_4],
[parent_31],
[parent_1, parent_2, parent_31, parent_4]
]
return packages_to_submit, txns_to_send
def run_test(self):
self.wallet = MiniWallet(self.nodes[1])
self.wallet_nonsegwit = MiniWallet(self.nodes[2], mode=MiniWalletMode.RAW_P2PK)
self.generate(self.wallet_nonsegwit, 10)
self.generate(self.wallet, 120)
self.log.info("Fill mempools with large transactions to raise mempool minimum feerates")
self.raise_network_minfee()
# Create the transactions.
self.wallet.rescan_utxos(include_mempool=True)
packages_to_submit, transactions_to_presend = self.create_packages()
self.peers = [self.nodes[i].add_p2p_connection(P2PInterface()) for i in range(self.num_nodes)]
self.log.info("Pre-send some transactions to nodes")
for (i, peer) in enumerate(self.peers):
for tx in transactions_to_presend[i]:
peer.send_and_ping(msg_tx(tx))
# Disconnect python peers to clear outstanding orphan requests with them, avoiding timeouts.
# We are only interested in the syncing behavior between real nodes.
for i in range(self.num_nodes):
self.nodes[i].disconnect_p2ps()
self.log.info("Submit full packages to node0")
for package_hex in packages_to_submit:
submitpackage_result = self.nodes[0].submitpackage(package_hex)
assert_equal(submitpackage_result["package_msg"], "success")
self.log.info("Wait for mempools to sync")
self.sync_mempools()
if __name__ == '__main__':
PackageRelayTest(__file__).main()