bitcoin/src/psbt.cpp
fanquake fb82d91a9c
Merge bitcoin/bitcoin#24149: Signing support for Miniscript Descriptors
6c7a17a8e0eec377f83ed1399f003ae70b898270 psbt: support externally provided preimages for Miniscript satisfaction (Antoine Poinsot)
840a396029316896beda46600aec3c1af09a899c qa: add a "smart" Miniscript fuzz target (Antoine Poinsot)
17e3547241d593bc92c5c6b36c54284d9d9f3feb qa: add a fuzz target generating random nodes from a binary encoding (Antoine Poinsot)
611e12502a5887ffb751bb92fadaa334d484824b qa: functional test Miniscript signing with key and timelocks (Antoine Poinsot)
d57b7f2021d2369f6e88cdf0f562aab27c51beaf refactor: make descriptors in Miniscript functional test more readable (Antoine Poinsot)
0a8fc9e200b5018c1efd6f9126eb405ca0beeea3 wallet: check solvability using descriptor in AvailableCoins (Antoine Poinsot)
560e62b1e221832ae99ff8684559a7b8f9df84a7 script/sign: signing support for Miniscripts with hash preimage challenges (Antoine Poinsot)
a2f81b6a8f1ff3b0750711409c7538812a52ef40 script/sign: signing support for Miniscript with timelocks (Antoine Poinsot)
61c6d1a8440db09c44d7fd367a6f2c641ea93d40 script/sign: basic signing support for Miniscript descriptors (Antoine Poinsot)
4242c1c52127df3a24be0c15b88d4fc463af04fc Align 'e' property of or_d and andor with website spec (Pieter Wuille)
f5deb417804b9f267830bd40177677987df4526d Various additional explanations of the satisfaction logic from Pieter (Pieter Wuille)
22c5b00345063bdeb8b6d3da8b5692d18f92bfb7 miniscript: satisfaction support (Antoine Poinsot)

Pull request description:

  This makes the Miniscript descriptors solvable.

  Note this introduces signing support for much more complex scripts than the wallet was previously able to solve, and the whole tooling isn't provided for a complete Miniscript integration in the wallet. Particularly, the PSBT<->Miniscript integration isn't entirely covered in this PR.

ACKs for top commit:
  achow101:
    ACK 6c7a17a8e0eec377f83ed1399f003ae70b898270
  sipa:
    utACK 6c7a17a8e0eec377f83ed1399f003ae70b898270 (to the extent that it's not my own code).

Tree-SHA512: a71ec002aaf66bd429012caa338fc58384067bcd2f453a46e21d381ed1bacc8e57afb9db57c0fb4bf40de43b30808815e9ebc0ae1fbd9e61df0e7b91a17771cc
2023-02-16 10:01:33 +00:00

534 lines
20 KiB
C++

// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <psbt.h>
#include <policy/policy.h>
#include <util/check.h>
#include <util/strencodings.h>
PartiallySignedTransaction::PartiallySignedTransaction(const CMutableTransaction& tx) : tx(tx)
{
inputs.resize(tx.vin.size());
outputs.resize(tx.vout.size());
}
bool PartiallySignedTransaction::IsNull() const
{
return !tx && inputs.empty() && outputs.empty() && unknown.empty();
}
bool PartiallySignedTransaction::Merge(const PartiallySignedTransaction& psbt)
{
// Prohibited to merge two PSBTs over different transactions
if (tx->GetHash() != psbt.tx->GetHash()) {
return false;
}
for (unsigned int i = 0; i < inputs.size(); ++i) {
inputs[i].Merge(psbt.inputs[i]);
}
for (unsigned int i = 0; i < outputs.size(); ++i) {
outputs[i].Merge(psbt.outputs[i]);
}
for (auto& xpub_pair : psbt.m_xpubs) {
if (m_xpubs.count(xpub_pair.first) == 0) {
m_xpubs[xpub_pair.first] = xpub_pair.second;
} else {
m_xpubs[xpub_pair.first].insert(xpub_pair.second.begin(), xpub_pair.second.end());
}
}
unknown.insert(psbt.unknown.begin(), psbt.unknown.end());
return true;
}
bool PartiallySignedTransaction::AddInput(const CTxIn& txin, PSBTInput& psbtin)
{
if (std::find(tx->vin.begin(), tx->vin.end(), txin) != tx->vin.end()) {
return false;
}
tx->vin.push_back(txin);
psbtin.partial_sigs.clear();
psbtin.final_script_sig.clear();
psbtin.final_script_witness.SetNull();
inputs.push_back(psbtin);
return true;
}
bool PartiallySignedTransaction::AddOutput(const CTxOut& txout, const PSBTOutput& psbtout)
{
tx->vout.push_back(txout);
outputs.push_back(psbtout);
return true;
}
bool PartiallySignedTransaction::GetInputUTXO(CTxOut& utxo, int input_index) const
{
const PSBTInput& input = inputs[input_index];
uint32_t prevout_index = tx->vin[input_index].prevout.n;
if (input.non_witness_utxo) {
if (prevout_index >= input.non_witness_utxo->vout.size()) {
return false;
}
if (input.non_witness_utxo->GetHash() != tx->vin[input_index].prevout.hash) {
return false;
}
utxo = input.non_witness_utxo->vout[prevout_index];
} else if (!input.witness_utxo.IsNull()) {
utxo = input.witness_utxo;
} else {
return false;
}
return true;
}
bool PSBTInput::IsNull() const
{
return !non_witness_utxo && witness_utxo.IsNull() && partial_sigs.empty() && unknown.empty() && hd_keypaths.empty() && redeem_script.empty() && witness_script.empty();
}
void PSBTInput::FillSignatureData(SignatureData& sigdata) const
{
if (!final_script_sig.empty()) {
sigdata.scriptSig = final_script_sig;
sigdata.complete = true;
}
if (!final_script_witness.IsNull()) {
sigdata.scriptWitness = final_script_witness;
sigdata.complete = true;
}
if (sigdata.complete) {
return;
}
sigdata.signatures.insert(partial_sigs.begin(), partial_sigs.end());
if (!redeem_script.empty()) {
sigdata.redeem_script = redeem_script;
}
if (!witness_script.empty()) {
sigdata.witness_script = witness_script;
}
for (const auto& key_pair : hd_keypaths) {
sigdata.misc_pubkeys.emplace(key_pair.first.GetID(), key_pair);
}
if (!m_tap_key_sig.empty()) {
sigdata.taproot_key_path_sig = m_tap_key_sig;
}
for (const auto& [pubkey_leaf, sig] : m_tap_script_sigs) {
sigdata.taproot_script_sigs.emplace(pubkey_leaf, sig);
}
if (!m_tap_internal_key.IsNull()) {
sigdata.tr_spenddata.internal_key = m_tap_internal_key;
}
if (!m_tap_merkle_root.IsNull()) {
sigdata.tr_spenddata.merkle_root = m_tap_merkle_root;
}
for (const auto& [leaf_script, control_block] : m_tap_scripts) {
sigdata.tr_spenddata.scripts.emplace(leaf_script, control_block);
}
for (const auto& [pubkey, leaf_origin] : m_tap_bip32_paths) {
sigdata.taproot_misc_pubkeys.emplace(pubkey, leaf_origin);
}
for (const auto& [hash, preimage] : ripemd160_preimages) {
sigdata.ripemd160_preimages.emplace(std::vector<unsigned char>(hash.begin(), hash.end()), preimage);
}
for (const auto& [hash, preimage] : sha256_preimages) {
sigdata.sha256_preimages.emplace(std::vector<unsigned char>(hash.begin(), hash.end()), preimage);
}
for (const auto& [hash, preimage] : hash160_preimages) {
sigdata.hash160_preimages.emplace(std::vector<unsigned char>(hash.begin(), hash.end()), preimage);
}
for (const auto& [hash, preimage] : hash256_preimages) {
sigdata.hash256_preimages.emplace(std::vector<unsigned char>(hash.begin(), hash.end()), preimage);
}
}
void PSBTInput::FromSignatureData(const SignatureData& sigdata)
{
if (sigdata.complete) {
partial_sigs.clear();
hd_keypaths.clear();
redeem_script.clear();
witness_script.clear();
if (!sigdata.scriptSig.empty()) {
final_script_sig = sigdata.scriptSig;
}
if (!sigdata.scriptWitness.IsNull()) {
final_script_witness = sigdata.scriptWitness;
}
return;
}
partial_sigs.insert(sigdata.signatures.begin(), sigdata.signatures.end());
if (redeem_script.empty() && !sigdata.redeem_script.empty()) {
redeem_script = sigdata.redeem_script;
}
if (witness_script.empty() && !sigdata.witness_script.empty()) {
witness_script = sigdata.witness_script;
}
for (const auto& entry : sigdata.misc_pubkeys) {
hd_keypaths.emplace(entry.second);
}
if (!sigdata.taproot_key_path_sig.empty()) {
m_tap_key_sig = sigdata.taproot_key_path_sig;
}
for (const auto& [pubkey_leaf, sig] : sigdata.taproot_script_sigs) {
m_tap_script_sigs.emplace(pubkey_leaf, sig);
}
if (!sigdata.tr_spenddata.internal_key.IsNull()) {
m_tap_internal_key = sigdata.tr_spenddata.internal_key;
}
if (!sigdata.tr_spenddata.merkle_root.IsNull()) {
m_tap_merkle_root = sigdata.tr_spenddata.merkle_root;
}
for (const auto& [leaf_script, control_block] : sigdata.tr_spenddata.scripts) {
m_tap_scripts.emplace(leaf_script, control_block);
}
for (const auto& [pubkey, leaf_origin] : sigdata.taproot_misc_pubkeys) {
m_tap_bip32_paths.emplace(pubkey, leaf_origin);
}
}
void PSBTInput::Merge(const PSBTInput& input)
{
if (!non_witness_utxo && input.non_witness_utxo) non_witness_utxo = input.non_witness_utxo;
if (witness_utxo.IsNull() && !input.witness_utxo.IsNull()) {
witness_utxo = input.witness_utxo;
}
partial_sigs.insert(input.partial_sigs.begin(), input.partial_sigs.end());
ripemd160_preimages.insert(input.ripemd160_preimages.begin(), input.ripemd160_preimages.end());
sha256_preimages.insert(input.sha256_preimages.begin(), input.sha256_preimages.end());
hash160_preimages.insert(input.hash160_preimages.begin(), input.hash160_preimages.end());
hash256_preimages.insert(input.hash256_preimages.begin(), input.hash256_preimages.end());
hd_keypaths.insert(input.hd_keypaths.begin(), input.hd_keypaths.end());
unknown.insert(input.unknown.begin(), input.unknown.end());
m_tap_script_sigs.insert(input.m_tap_script_sigs.begin(), input.m_tap_script_sigs.end());
m_tap_scripts.insert(input.m_tap_scripts.begin(), input.m_tap_scripts.end());
m_tap_bip32_paths.insert(input.m_tap_bip32_paths.begin(), input.m_tap_bip32_paths.end());
if (redeem_script.empty() && !input.redeem_script.empty()) redeem_script = input.redeem_script;
if (witness_script.empty() && !input.witness_script.empty()) witness_script = input.witness_script;
if (final_script_sig.empty() && !input.final_script_sig.empty()) final_script_sig = input.final_script_sig;
if (final_script_witness.IsNull() && !input.final_script_witness.IsNull()) final_script_witness = input.final_script_witness;
if (m_tap_key_sig.empty() && !input.m_tap_key_sig.empty()) m_tap_key_sig = input.m_tap_key_sig;
if (m_tap_internal_key.IsNull() && !input.m_tap_internal_key.IsNull()) m_tap_internal_key = input.m_tap_internal_key;
if (m_tap_merkle_root.IsNull() && !input.m_tap_merkle_root.IsNull()) m_tap_merkle_root = input.m_tap_merkle_root;
}
void PSBTOutput::FillSignatureData(SignatureData& sigdata) const
{
if (!redeem_script.empty()) {
sigdata.redeem_script = redeem_script;
}
if (!witness_script.empty()) {
sigdata.witness_script = witness_script;
}
for (const auto& key_pair : hd_keypaths) {
sigdata.misc_pubkeys.emplace(key_pair.first.GetID(), key_pair);
}
if (!m_tap_tree.empty() && m_tap_internal_key.IsFullyValid()) {
TaprootBuilder builder;
for (const auto& [depth, leaf_ver, script] : m_tap_tree) {
builder.Add((int)depth, script, (int)leaf_ver, /*track=*/true);
}
assert(builder.IsComplete());
builder.Finalize(m_tap_internal_key);
TaprootSpendData spenddata = builder.GetSpendData();
sigdata.tr_spenddata.internal_key = m_tap_internal_key;
sigdata.tr_spenddata.Merge(spenddata);
}
for (const auto& [pubkey, leaf_origin] : m_tap_bip32_paths) {
sigdata.taproot_misc_pubkeys.emplace(pubkey, leaf_origin);
}
}
void PSBTOutput::FromSignatureData(const SignatureData& sigdata)
{
if (redeem_script.empty() && !sigdata.redeem_script.empty()) {
redeem_script = sigdata.redeem_script;
}
if (witness_script.empty() && !sigdata.witness_script.empty()) {
witness_script = sigdata.witness_script;
}
for (const auto& entry : sigdata.misc_pubkeys) {
hd_keypaths.emplace(entry.second);
}
if (!sigdata.tr_spenddata.internal_key.IsNull()) {
m_tap_internal_key = sigdata.tr_spenddata.internal_key;
}
if (sigdata.tr_builder.has_value() && sigdata.tr_builder->HasScripts()) {
m_tap_tree = sigdata.tr_builder->GetTreeTuples();
}
for (const auto& [pubkey, leaf_origin] : sigdata.taproot_misc_pubkeys) {
m_tap_bip32_paths.emplace(pubkey, leaf_origin);
}
}
bool PSBTOutput::IsNull() const
{
return redeem_script.empty() && witness_script.empty() && hd_keypaths.empty() && unknown.empty();
}
void PSBTOutput::Merge(const PSBTOutput& output)
{
hd_keypaths.insert(output.hd_keypaths.begin(), output.hd_keypaths.end());
unknown.insert(output.unknown.begin(), output.unknown.end());
m_tap_bip32_paths.insert(output.m_tap_bip32_paths.begin(), output.m_tap_bip32_paths.end());
if (redeem_script.empty() && !output.redeem_script.empty()) redeem_script = output.redeem_script;
if (witness_script.empty() && !output.witness_script.empty()) witness_script = output.witness_script;
if (m_tap_internal_key.IsNull() && !output.m_tap_internal_key.IsNull()) m_tap_internal_key = output.m_tap_internal_key;
if (m_tap_tree.empty() && !output.m_tap_tree.empty()) m_tap_tree = output.m_tap_tree;
}
bool PSBTInputSigned(const PSBTInput& input)
{
return !input.final_script_sig.empty() || !input.final_script_witness.IsNull();
}
bool PSBTInputSignedAndVerified(const PartiallySignedTransaction psbt, unsigned int input_index, const PrecomputedTransactionData* txdata)
{
CTxOut utxo;
assert(psbt.inputs.size() >= input_index);
const PSBTInput& input = psbt.inputs[input_index];
if (input.non_witness_utxo) {
// If we're taking our information from a non-witness UTXO, verify that it matches the prevout.
COutPoint prevout = psbt.tx->vin[input_index].prevout;
if (prevout.n >= input.non_witness_utxo->vout.size()) {
return false;
}
if (input.non_witness_utxo->GetHash() != prevout.hash) {
return false;
}
utxo = input.non_witness_utxo->vout[prevout.n];
} else if (!input.witness_utxo.IsNull()) {
utxo = input.witness_utxo;
} else {
return false;
}
if (txdata) {
return VerifyScript(input.final_script_sig, utxo.scriptPubKey, &input.final_script_witness, STANDARD_SCRIPT_VERIFY_FLAGS, MutableTransactionSignatureChecker{&(*psbt.tx), input_index, utxo.nValue, *txdata, MissingDataBehavior::FAIL});
} else {
return VerifyScript(input.final_script_sig, utxo.scriptPubKey, &input.final_script_witness, STANDARD_SCRIPT_VERIFY_FLAGS, MutableTransactionSignatureChecker{&(*psbt.tx), input_index, utxo.nValue, MissingDataBehavior::FAIL});
}
}
size_t CountPSBTUnsignedInputs(const PartiallySignedTransaction& psbt) {
size_t count = 0;
for (const auto& input : psbt.inputs) {
if (!PSBTInputSigned(input)) {
count++;
}
}
return count;
}
void UpdatePSBTOutput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index)
{
CMutableTransaction& tx = *Assert(psbt.tx);
const CTxOut& out = tx.vout.at(index);
PSBTOutput& psbt_out = psbt.outputs.at(index);
// Fill a SignatureData with output info
SignatureData sigdata;
psbt_out.FillSignatureData(sigdata);
// Construct a would-be spend of this output, to update sigdata with.
// Note that ProduceSignature is used to fill in metadata (not actual signatures),
// so provider does not need to provide any private keys (it can be a HidingSigningProvider).
MutableTransactionSignatureCreator creator(tx, /*input_idx=*/0, out.nValue, SIGHASH_ALL);
ProduceSignature(provider, creator, out.scriptPubKey, sigdata);
// Put redeem_script, witness_script, key paths, into PSBTOutput.
psbt_out.FromSignatureData(sigdata);
}
PrecomputedTransactionData PrecomputePSBTData(const PartiallySignedTransaction& psbt)
{
const CMutableTransaction& tx = *psbt.tx;
bool have_all_spent_outputs = true;
std::vector<CTxOut> utxos(tx.vin.size());
for (size_t idx = 0; idx < tx.vin.size(); ++idx) {
if (!psbt.GetInputUTXO(utxos[idx], idx)) have_all_spent_outputs = false;
}
PrecomputedTransactionData txdata;
if (have_all_spent_outputs) {
txdata.Init(tx, std::move(utxos), true);
} else {
txdata.Init(tx, {}, true);
}
return txdata;
}
bool SignPSBTInput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index, const PrecomputedTransactionData* txdata, int sighash, SignatureData* out_sigdata, bool finalize)
{
PSBTInput& input = psbt.inputs.at(index);
const CMutableTransaction& tx = *psbt.tx;
if (PSBTInputSignedAndVerified(psbt, index, txdata)) {
return true;
}
// Fill SignatureData with input info
SignatureData sigdata;
input.FillSignatureData(sigdata);
// Get UTXO
bool require_witness_sig = false;
CTxOut utxo;
if (input.non_witness_utxo) {
// If we're taking our information from a non-witness UTXO, verify that it matches the prevout.
COutPoint prevout = tx.vin[index].prevout;
if (prevout.n >= input.non_witness_utxo->vout.size()) {
return false;
}
if (input.non_witness_utxo->GetHash() != prevout.hash) {
return false;
}
utxo = input.non_witness_utxo->vout[prevout.n];
} else if (!input.witness_utxo.IsNull()) {
utxo = input.witness_utxo;
// When we're taking our information from a witness UTXO, we can't verify it is actually data from
// the output being spent. This is safe in case a witness signature is produced (which includes this
// information directly in the hash), but not for non-witness signatures. Remember that we require
// a witness signature in this situation.
require_witness_sig = true;
} else {
return false;
}
sigdata.witness = false;
bool sig_complete;
if (txdata == nullptr) {
sig_complete = ProduceSignature(provider, DUMMY_SIGNATURE_CREATOR, utxo.scriptPubKey, sigdata);
} else {
MutableTransactionSignatureCreator creator(tx, index, utxo.nValue, txdata, sighash);
sig_complete = ProduceSignature(provider, creator, utxo.scriptPubKey, sigdata);
}
// Verify that a witness signature was produced in case one was required.
if (require_witness_sig && !sigdata.witness) return false;
// If we are not finalizing, set sigdata.complete to false to not set the scriptWitness
if (!finalize && sigdata.complete) sigdata.complete = false;
input.FromSignatureData(sigdata);
// If we have a witness signature, put a witness UTXO.
if (sigdata.witness) {
input.witness_utxo = utxo;
// We can remove the non_witness_utxo if and only if there are no non-segwit or segwit v0
// inputs in this transaction. Since this requires inspecting the entire transaction, this
// is something for the caller to deal with (i.e. FillPSBT).
}
// Fill in the missing info
if (out_sigdata) {
out_sigdata->missing_pubkeys = sigdata.missing_pubkeys;
out_sigdata->missing_sigs = sigdata.missing_sigs;
out_sigdata->missing_redeem_script = sigdata.missing_redeem_script;
out_sigdata->missing_witness_script = sigdata.missing_witness_script;
}
return sig_complete;
}
bool FinalizePSBT(PartiallySignedTransaction& psbtx)
{
// Finalize input signatures -- in case we have partial signatures that add up to a complete
// signature, but have not combined them yet (e.g. because the combiner that created this
// PartiallySignedTransaction did not understand them), this will combine them into a final
// script.
bool complete = true;
const PrecomputedTransactionData txdata = PrecomputePSBTData(psbtx);
for (unsigned int i = 0; i < psbtx.tx->vin.size(); ++i) {
complete &= SignPSBTInput(DUMMY_SIGNING_PROVIDER, psbtx, i, &txdata, SIGHASH_ALL, nullptr, true);
}
return complete;
}
bool FinalizeAndExtractPSBT(PartiallySignedTransaction& psbtx, CMutableTransaction& result)
{
// It's not safe to extract a PSBT that isn't finalized, and there's no easy way to check
// whether a PSBT is finalized without finalizing it, so we just do this.
if (!FinalizePSBT(psbtx)) {
return false;
}
result = *psbtx.tx;
for (unsigned int i = 0; i < result.vin.size(); ++i) {
result.vin[i].scriptSig = psbtx.inputs[i].final_script_sig;
result.vin[i].scriptWitness = psbtx.inputs[i].final_script_witness;
}
return true;
}
TransactionError CombinePSBTs(PartiallySignedTransaction& out, const std::vector<PartiallySignedTransaction>& psbtxs)
{
out = psbtxs[0]; // Copy the first one
// Merge
for (auto it = std::next(psbtxs.begin()); it != psbtxs.end(); ++it) {
if (!out.Merge(*it)) {
return TransactionError::PSBT_MISMATCH;
}
}
return TransactionError::OK;
}
std::string PSBTRoleName(PSBTRole role) {
switch (role) {
case PSBTRole::CREATOR: return "creator";
case PSBTRole::UPDATER: return "updater";
case PSBTRole::SIGNER: return "signer";
case PSBTRole::FINALIZER: return "finalizer";
case PSBTRole::EXTRACTOR: return "extractor";
// no default case, so the compiler can warn about missing cases
}
assert(false);
}
bool DecodeBase64PSBT(PartiallySignedTransaction& psbt, const std::string& base64_tx, std::string& error)
{
auto tx_data = DecodeBase64(base64_tx);
if (!tx_data) {
error = "invalid base64";
return false;
}
return DecodeRawPSBT(psbt, MakeByteSpan(*tx_data), error);
}
bool DecodeRawPSBT(PartiallySignedTransaction& psbt, Span<const std::byte> tx_data, std::string& error)
{
CDataStream ss_data(tx_data, SER_NETWORK, PROTOCOL_VERSION);
try {
ss_data >> psbt;
if (!ss_data.empty()) {
error = "extra data after PSBT";
return false;
}
} catch (const std::exception& e) {
error = e.what();
return false;
}
return true;
}
uint32_t PartiallySignedTransaction::GetVersion() const
{
if (m_version != std::nullopt) {
return *m_version;
}
return 0;
}