Files
bitcoin/src/node/blockstorage.cpp
merge-script 695e2b94ec Merge bitcoin/bitcoin#33353: log: show reindex progress in ImportBlocks
d7de5b109f logs: show reindex progress in `ImportBlocks` (Lőrinc)

Pull request description:

  ### Summary

  When triggering a reindex, users have no indication of progress.

  ### Fix

  This patch precomputes the total number of block files so progress can be shown.
  Instead of only displaying which block file is being processed, it now shows the percent complete.

  ### Reproducer + expected results

  ```bash
  cmake -B build -DCMAKE_BUILD_TYPE=Release && make -C build -j && ./build/bin/bitcoind -datadir=demo -reindex
  ```

  Before, the block files were shown one-by-one, there's no way to see how much work is left:
  ```
  Reindexing block file blk00000.dat...
  Loaded 119920 blocks from external file in 1228ms
  Reindexing block file blk00001.dat...
  Loaded 10671 blocks from external file in 284ms
  Reindexing block file blk00002.dat...
  Loaded 5459 blocks from external file in 263ms
  Reindexing block file blk00003.dat...
  Loaded 5595 blocks from external file in 267ms
  ```

  After the change we add a percentage:
  ```
  Reindexing block file blk00000.dat (0% complete)...
  Loaded 119920 blocks from external file in 1255ms
  Reindexing block file blk00001.dat (1% complete)...
  Loaded 10671 blocks from external file in 303ms
  Reindexing block file blk00002.dat (2% complete)...
  Loaded 5459 blocks from external file in 278ms
  Reindexing block file blk00003.dat (3% complete)...
  Loaded 5595 blocks from external file in 285ms
  ```

ACKs for top commit:
  enirox001:
    Concept ACK d7de5b1
  rkrux:
    lgtm ACK d7de5b109f
  danielabrozzoni:
    tACK d7de5b109f - code reviewed and tested on my archival node.
  maflcko:
    review ACK d7de5b109f 💇

Tree-SHA512: 359a539b781ad8b73e2a616c951567062a76be27cf90e5b88bb5309295af9cd7994e327f185bacc1482b43b892b38329593b4043a5e71d8800e3e4b7a3954310
2025-12-22 08:12:03 -08:00

1315 lines
50 KiB
C++

// Copyright (c) 2011-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/blockstorage.h>
#include <arith_uint256.h>
#include <chain.h>
#include <consensus/params.h>
#include <dbwrapper.h>
#include <flatfile.h>
#include <hash.h>
#include <kernel/blockmanager_opts.h>
#include <kernel/chainparams.h>
#include <kernel/messagestartchars.h>
#include <kernel/notifications_interface.h>
#include <kernel/types.h>
#include <logging.h>
#include <pow.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <random.h>
#include <serialize.h>
#include <signet.h>
#include <streams.h>
#include <sync.h>
#include <tinyformat.h>
#include <uint256.h>
#include <undo.h>
#include <util/check.h>
#include <util/expected.h>
#include <util/fs.h>
#include <util/obfuscation.h>
#include <util/overflow.h>
#include <util/result.h>
#include <util/signalinterrupt.h>
#include <util/strencodings.h>
#include <util/syserror.h>
#include <util/time.h>
#include <util/translation.h>
#include <validation.h>
#include <cerrno>
#include <compare>
#include <cstddef>
#include <cstdio>
#include <exception>
#include <map>
#include <optional>
#include <ostream>
#include <span>
#include <stdexcept>
#include <system_error>
#include <unordered_map>
namespace kernel {
static constexpr uint8_t DB_BLOCK_FILES{'f'};
static constexpr uint8_t DB_BLOCK_INDEX{'b'};
static constexpr uint8_t DB_FLAG{'F'};
static constexpr uint8_t DB_REINDEX_FLAG{'R'};
static constexpr uint8_t DB_LAST_BLOCK{'l'};
// Keys used in previous version that might still be found in the DB:
// BlockTreeDB::DB_TXINDEX_BLOCK{'T'};
// BlockTreeDB::DB_TXINDEX{'t'}
// BlockTreeDB::ReadFlag("txindex")
bool BlockTreeDB::ReadBlockFileInfo(int nFile, CBlockFileInfo& info)
{
return Read(std::make_pair(DB_BLOCK_FILES, nFile), info);
}
void BlockTreeDB::WriteReindexing(bool fReindexing)
{
if (fReindexing) {
Write(DB_REINDEX_FLAG, uint8_t{'1'});
} else {
Erase(DB_REINDEX_FLAG);
}
}
void BlockTreeDB::ReadReindexing(bool& fReindexing)
{
fReindexing = Exists(DB_REINDEX_FLAG);
}
bool BlockTreeDB::ReadLastBlockFile(int& nFile)
{
return Read(DB_LAST_BLOCK, nFile);
}
void BlockTreeDB::WriteBatchSync(const std::vector<std::pair<int, const CBlockFileInfo*>>& fileInfo, int nLastFile, const std::vector<const CBlockIndex*>& blockinfo)
{
CDBBatch batch(*this);
for (const auto& [file, info] : fileInfo) {
batch.Write(std::make_pair(DB_BLOCK_FILES, file), *info);
}
batch.Write(DB_LAST_BLOCK, nLastFile);
for (const CBlockIndex* bi : blockinfo) {
batch.Write(std::make_pair(DB_BLOCK_INDEX, bi->GetBlockHash()), CDiskBlockIndex{bi});
}
WriteBatch(batch, true);
}
void BlockTreeDB::WriteFlag(const std::string& name, bool fValue)
{
Write(std::make_pair(DB_FLAG, name), fValue ? uint8_t{'1'} : uint8_t{'0'});
}
bool BlockTreeDB::ReadFlag(const std::string& name, bool& fValue)
{
uint8_t ch;
if (!Read(std::make_pair(DB_FLAG, name), ch)) {
return false;
}
fValue = ch == uint8_t{'1'};
return true;
}
bool BlockTreeDB::LoadBlockIndexGuts(const Consensus::Params& consensusParams, std::function<CBlockIndex*(const uint256&)> insertBlockIndex, const util::SignalInterrupt& interrupt)
{
AssertLockHeld(::cs_main);
std::unique_ptr<CDBIterator> pcursor(NewIterator());
pcursor->Seek(std::make_pair(DB_BLOCK_INDEX, uint256()));
// Load m_block_index
while (pcursor->Valid()) {
if (interrupt) return false;
std::pair<uint8_t, uint256> key;
if (pcursor->GetKey(key) && key.first == DB_BLOCK_INDEX) {
CDiskBlockIndex diskindex;
if (pcursor->GetValue(diskindex)) {
// Construct block index object
CBlockIndex* pindexNew = insertBlockIndex(diskindex.ConstructBlockHash());
pindexNew->pprev = insertBlockIndex(diskindex.hashPrev);
pindexNew->nHeight = diskindex.nHeight;
pindexNew->nFile = diskindex.nFile;
pindexNew->nDataPos = diskindex.nDataPos;
pindexNew->nUndoPos = diskindex.nUndoPos;
pindexNew->nVersion = diskindex.nVersion;
pindexNew->hashMerkleRoot = diskindex.hashMerkleRoot;
pindexNew->nTime = diskindex.nTime;
pindexNew->nBits = diskindex.nBits;
pindexNew->nNonce = diskindex.nNonce;
pindexNew->nStatus = diskindex.nStatus;
pindexNew->nTx = diskindex.nTx;
if (!CheckProofOfWork(pindexNew->GetBlockHash(), pindexNew->nBits, consensusParams)) {
LogError("%s: CheckProofOfWork failed: %s\n", __func__, pindexNew->ToString());
return false;
}
pcursor->Next();
} else {
LogError("%s: failed to read value\n", __func__);
return false;
}
} else {
break;
}
}
return true;
}
std::string CBlockFileInfo::ToString() const
{
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, FormatISO8601Date(nTimeFirst), FormatISO8601Date(nTimeLast));
}
} // namespace kernel
namespace node {
bool CBlockIndexWorkComparator::operator()(const CBlockIndex* pa, const CBlockIndex* pb) const
{
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest activatable time, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those share the same id: 0 for blocks on the
// best chain, 1 for all others).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
bool CBlockIndexHeightOnlyComparator::operator()(const CBlockIndex* pa, const CBlockIndex* pb) const
{
return pa->nHeight < pb->nHeight;
}
std::vector<CBlockIndex*> BlockManager::GetAllBlockIndices()
{
AssertLockHeld(cs_main);
std::vector<CBlockIndex*> rv;
rv.reserve(m_block_index.size());
for (auto& [_, block_index] : m_block_index) {
rv.push_back(&block_index);
}
return rv;
}
CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
BlockMap::iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : &it->second;
}
const CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
AssertLockHeld(cs_main);
BlockMap::const_iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : &it->second;
}
CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block, CBlockIndex*& best_header)
{
AssertLockHeld(cs_main);
auto [mi, inserted] = m_block_index.try_emplace(block.GetHash(), block);
if (!inserted) {
return &mi->second;
}
CBlockIndex* pindexNew = &(*mi).second;
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = SEQ_ID_INIT_FROM_DISK;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
if (miPrev != m_block_index.end()) {
pindexNew->pprev = &(*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (best_header == nullptr || best_header->nChainWork < pindexNew->nChainWork) {
best_header = pindexNew;
}
m_dirty_blockindex.insert(pindexNew);
return pindexNew;
}
void BlockManager::PruneOneBlockFile(const int fileNumber)
{
AssertLockHeld(cs_main);
LOCK(cs_LastBlockFile);
for (auto& entry : m_block_index) {
CBlockIndex* pindex = &entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
m_dirty_blockindex.insert(pindex);
// Prune from m_blocks_unlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// m_blocks_unlinked or setBlockIndexCandidates.
auto range = m_blocks_unlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator _it = range.first;
range.first++;
if (_it->second == pindex) {
m_blocks_unlinked.erase(_it);
}
}
}
}
m_blockfile_info.at(fileNumber) = CBlockFileInfo{};
m_dirty_fileinfo.insert(fileNumber);
}
void BlockManager::FindFilesToPruneManual(
std::set<int>& setFilesToPrune,
int nManualPruneHeight,
const Chainstate& chain)
{
assert(IsPruneMode() && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chain.m_chain.Height() < 0) {
return;
}
const auto [min_block_to_prune, last_block_can_prune] = chain.GetPruneRange(nManualPruneHeight);
int count = 0;
for (int fileNumber = 0; fileNumber < this->MaxBlockfileNum(); fileNumber++) {
const auto& fileinfo = m_blockfile_info[fileNumber];
if (fileinfo.nSize == 0 || fileinfo.nHeightLast > (unsigned)last_block_can_prune || fileinfo.nHeightFirst < (unsigned)min_block_to_prune) {
continue;
}
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogInfo("[%s] Prune (Manual): prune_height=%d removed %d blk/rev pairs",
chain.GetRole(), last_block_can_prune, count);
}
void BlockManager::FindFilesToPrune(
std::set<int>& setFilesToPrune,
int last_prune,
const Chainstate& chain,
ChainstateManager& chainman)
{
LOCK2(cs_main, cs_LastBlockFile);
// Compute `target` value with maximum size (in bytes) of blocks below the
// `last_prune` height which should be preserved and not pruned. The
// `target` value will be derived from the -prune preference provided by the
// user. If there is a historical chainstate being used to populate indexes
// and validate the snapshot, the target is divided by two so half of the
// block storage will be reserved for the historical chainstate, and the
// other half will be reserved for the most-work chainstate.
const int num_chainstates{chainman.HistoricalChainstate() ? 2 : 1};
const auto target = std::max(
MIN_DISK_SPACE_FOR_BLOCK_FILES, GetPruneTarget() / num_chainstates);
const uint64_t target_sync_height = chainman.m_best_header->nHeight;
if (chain.m_chain.Height() < 0 || target == 0) {
return;
}
if (static_cast<uint64_t>(chain.m_chain.Height()) <= chainman.GetParams().PruneAfterHeight()) {
return;
}
const auto [min_block_to_prune, last_block_can_prune] = chain.GetPruneRange(last_prune);
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= target) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer to avoid a re-prune too soon.
const auto chain_tip_height = chain.m_chain.Height();
if (chainman.IsInitialBlockDownload() && target_sync_height > (uint64_t)chain_tip_height) {
// Since this is only relevant during IBD, we assume blocks are at least 1 MB on average
static constexpr uint64_t average_block_size = 1000000; /* 1 MB */
const uint64_t remaining_blocks = target_sync_height - chain_tip_height;
nBuffer += average_block_size * remaining_blocks;
}
for (int fileNumber = 0; fileNumber < this->MaxBlockfileNum(); fileNumber++) {
const auto& fileinfo = m_blockfile_info[fileNumber];
nBytesToPrune = fileinfo.nSize + fileinfo.nUndoSize;
if (fileinfo.nSize == 0) {
continue;
}
if (nCurrentUsage + nBuffer < target) { // are we below our target?
break;
}
// don't prune files that could have a block that's not within the allowable
// prune range for the chain being pruned.
if (fileinfo.nHeightLast > (unsigned)last_block_can_prune || fileinfo.nHeightFirst < (unsigned)min_block_to_prune) {
continue;
}
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogDebug(BCLog::PRUNE, "[%s] target=%dMiB actual=%dMiB diff=%dMiB min_height=%d max_prune_height=%d removed %d blk/rev pairs\n",
chain.GetRole(), target / 1024 / 1024, nCurrentUsage / 1024 / 1024,
(int64_t(target) - int64_t(nCurrentUsage)) / 1024 / 1024,
min_block_to_prune, last_block_can_prune, count);
}
void BlockManager::UpdatePruneLock(const std::string& name, const PruneLockInfo& lock_info) {
AssertLockHeld(::cs_main);
m_prune_locks[name] = lock_info;
}
CBlockIndex* BlockManager::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull()) {
return nullptr;
}
const auto [mi, inserted]{m_block_index.try_emplace(hash)};
CBlockIndex* pindex = &(*mi).second;
if (inserted) {
pindex->phashBlock = &((*mi).first);
}
return pindex;
}
bool BlockManager::LoadBlockIndex(const std::optional<uint256>& snapshot_blockhash)
{
if (!m_block_tree_db->LoadBlockIndexGuts(
GetConsensus(), [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); }, m_interrupt)) {
return false;
}
if (snapshot_blockhash) {
const std::optional<AssumeutxoData> maybe_au_data = GetParams().AssumeutxoForBlockhash(*snapshot_blockhash);
if (!maybe_au_data) {
m_opts.notifications.fatalError(strprintf(_("Assumeutxo data not found for the given blockhash '%s'."), snapshot_blockhash->ToString()));
return false;
}
const AssumeutxoData& au_data = *Assert(maybe_au_data);
m_snapshot_height = au_data.height;
CBlockIndex* base{LookupBlockIndex(*snapshot_blockhash)};
// Since m_chain_tx_count (responsible for estimated progress) isn't persisted
// to disk, we must bootstrap the value for assumedvalid chainstates
// from the hardcoded assumeutxo chainparams.
base->m_chain_tx_count = au_data.m_chain_tx_count;
LogInfo("[snapshot] set m_chain_tx_count=%d for %s", au_data.m_chain_tx_count, snapshot_blockhash->ToString());
} else {
// If this isn't called with a snapshot blockhash, make sure the cached snapshot height
// is null. This is relevant during snapshot completion, when the blockman may be loaded
// with a height that then needs to be cleared after the snapshot is fully validated.
m_snapshot_height.reset();
}
Assert(m_snapshot_height.has_value() == snapshot_blockhash.has_value());
// Calculate nChainWork
std::vector<CBlockIndex*> vSortedByHeight{GetAllBlockIndices()};
std::sort(vSortedByHeight.begin(), vSortedByHeight.end(),
CBlockIndexHeightOnlyComparator());
CBlockIndex* previous_index{nullptr};
for (CBlockIndex* pindex : vSortedByHeight) {
if (m_interrupt) return false;
if (previous_index && pindex->nHeight > previous_index->nHeight + 1) {
LogError("%s: block index is non-contiguous, index of height %d missing\n", __func__, previous_index->nHeight + 1);
return false;
}
previous_index = pindex;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point, or
// blocks that are assumed-valid on the basis of snapshot load (see
// PopulateAndValidateSnapshot()).
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (m_snapshot_height && pindex->nHeight == *m_snapshot_height &&
pindex->GetBlockHash() == *snapshot_blockhash) {
// Should have been set above; don't disturb it with code below.
Assert(pindex->m_chain_tx_count > 0);
} else if (pindex->pprev->m_chain_tx_count > 0) {
pindex->m_chain_tx_count = pindex->pprev->m_chain_tx_count + pindex->nTx;
} else {
pindex->m_chain_tx_count = 0;
m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->m_chain_tx_count = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
m_dirty_blockindex.insert(pindex);
}
if (pindex->pprev) {
pindex->BuildSkip();
}
}
return true;
}
void BlockManager::WriteBlockIndexDB()
{
AssertLockHeld(::cs_main);
std::vector<std::pair<int, const CBlockFileInfo*>> vFiles;
vFiles.reserve(m_dirty_fileinfo.size());
for (std::set<int>::iterator it = m_dirty_fileinfo.begin(); it != m_dirty_fileinfo.end();) {
vFiles.emplace_back(*it, &m_blockfile_info[*it]);
m_dirty_fileinfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(m_dirty_blockindex.size());
for (std::set<CBlockIndex*>::iterator it = m_dirty_blockindex.begin(); it != m_dirty_blockindex.end();) {
vBlocks.push_back(*it);
m_dirty_blockindex.erase(it++);
}
int max_blockfile = WITH_LOCK(cs_LastBlockFile, return this->MaxBlockfileNum());
m_block_tree_db->WriteBatchSync(vFiles, max_blockfile, vBlocks);
}
bool BlockManager::LoadBlockIndexDB(const std::optional<uint256>& snapshot_blockhash)
{
if (!LoadBlockIndex(snapshot_blockhash)) {
return false;
}
int max_blockfile_num{0};
// Load block file info
m_block_tree_db->ReadLastBlockFile(max_blockfile_num);
m_blockfile_info.resize(max_blockfile_num + 1);
LogInfo("Loading block index db: last block file = %i", max_blockfile_num);
for (int nFile = 0; nFile <= max_blockfile_num; nFile++) {
m_block_tree_db->ReadBlockFileInfo(nFile, m_blockfile_info[nFile]);
}
LogInfo("Loading block index db: last block file info: %s", m_blockfile_info[max_blockfile_num].ToString());
for (int nFile = max_blockfile_num + 1; true; nFile++) {
CBlockFileInfo info;
if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
m_blockfile_info.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogInfo("Checking all blk files are present...");
std::set<int> setBlkDataFiles;
for (const auto& [_, block_index] : m_block_index) {
if (block_index.nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(block_index.nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) {
FlatFilePos pos(*it, 0);
if (OpenBlockFile(pos, /*fReadOnly=*/true).IsNull()) {
return false;
}
}
{
// Initialize the blockfile cursors.
LOCK(cs_LastBlockFile);
for (size_t i = 0; i < m_blockfile_info.size(); ++i) {
const auto last_height_in_file = m_blockfile_info[i].nHeightLast;
m_blockfile_cursors[BlockfileTypeForHeight(last_height_in_file)] = {static_cast<int>(i), 0};
}
}
// Check whether we have ever pruned block & undo files
m_block_tree_db->ReadFlag("prunedblockfiles", m_have_pruned);
if (m_have_pruned) {
LogInfo("Loading block index db: Block files have previously been pruned");
}
// Check whether we need to continue reindexing
bool fReindexing = false;
m_block_tree_db->ReadReindexing(fReindexing);
if (fReindexing) m_blockfiles_indexed = false;
return true;
}
void BlockManager::ScanAndUnlinkAlreadyPrunedFiles()
{
AssertLockHeld(::cs_main);
int max_blockfile = WITH_LOCK(cs_LastBlockFile, return this->MaxBlockfileNum());
if (!m_have_pruned) {
return;
}
std::set<int> block_files_to_prune;
for (int file_number = 0; file_number < max_blockfile; file_number++) {
if (m_blockfile_info[file_number].nSize == 0) {
block_files_to_prune.insert(file_number);
}
}
UnlinkPrunedFiles(block_files_to_prune);
}
bool BlockManager::IsBlockPruned(const CBlockIndex& block) const
{
AssertLockHeld(::cs_main);
return m_have_pruned && !(block.nStatus & BLOCK_HAVE_DATA) && (block.nTx > 0);
}
const CBlockIndex& BlockManager::GetFirstBlock(const CBlockIndex& upper_block, uint32_t status_mask, const CBlockIndex* lower_block) const
{
AssertLockHeld(::cs_main);
const CBlockIndex* last_block = &upper_block;
assert((last_block->nStatus & status_mask) == status_mask); // 'upper_block' must satisfy the status mask
while (last_block->pprev && ((last_block->pprev->nStatus & status_mask) == status_mask)) {
if (lower_block) {
// Return if we reached the lower_block
if (last_block == lower_block) return *lower_block;
// if range was surpassed, means that 'lower_block' is not part of the 'upper_block' chain
// and so far this is not allowed.
assert(last_block->nHeight >= lower_block->nHeight);
}
last_block = last_block->pprev;
}
assert(last_block != nullptr);
return *last_block;
}
bool BlockManager::CheckBlockDataAvailability(const CBlockIndex& upper_block, const CBlockIndex& lower_block)
{
if (!(upper_block.nStatus & BLOCK_HAVE_DATA)) return false;
return &GetFirstBlock(upper_block, BLOCK_HAVE_DATA, &lower_block) == &lower_block;
}
// If we're using -prune with -reindex, then delete block files that will be ignored by the
// reindex. Since reindexing works by starting at block file 0 and looping until a blockfile
// is missing, do the same here to delete any later block files after a gap. Also delete all
// rev files since they'll be rewritten by the reindex anyway. This ensures that m_blockfile_info
// is in sync with what's actually on disk by the time we start downloading, so that pruning
// works correctly.
void BlockManager::CleanupBlockRevFiles() const
{
std::map<std::string, fs::path> mapBlockFiles;
// Glob all blk?????.dat and rev?????.dat files from the blocks directory.
// Remove the rev files immediately and insert the blk file paths into an
// ordered map keyed by block file index.
LogInfo("Removing unusable blk?????.dat and rev?????.dat files for -reindex with -prune");
for (fs::directory_iterator it(m_opts.blocks_dir); it != fs::directory_iterator(); it++) {
const std::string path = fs::PathToString(it->path().filename());
if (fs::is_regular_file(*it) &&
path.length() == 12 &&
path.ends_with(".dat"))
{
if (path.starts_with("blk")) {
mapBlockFiles[path.substr(3, 5)] = it->path();
} else if (path.starts_with("rev")) {
remove(it->path());
}
}
}
// Remove all block files that aren't part of a contiguous set starting at
// zero by walking the ordered map (keys are block file indices) by
// keeping a separate counter. Once we hit a gap (or if 0 doesn't exist)
// start removing block files.
int nContigCounter = 0;
for (const std::pair<const std::string, fs::path>& item : mapBlockFiles) {
if (LocaleIndependentAtoi<int>(item.first) == nContigCounter) {
nContigCounter++;
continue;
}
remove(item.second);
}
}
CBlockFileInfo* BlockManager::GetBlockFileInfo(size_t n)
{
LOCK(cs_LastBlockFile);
return &m_blockfile_info.at(n);
}
bool BlockManager::ReadBlockUndo(CBlockUndo& blockundo, const CBlockIndex& index) const
{
const FlatFilePos pos{WITH_LOCK(::cs_main, return index.GetUndoPos())};
// Open history file to read
AutoFile file{OpenUndoFile(pos, true)};
if (file.IsNull()) {
LogError("OpenUndoFile failed for %s while reading block undo", pos.ToString());
return false;
}
BufferedReader filein{std::move(file)};
try {
// Read block
HashVerifier verifier{filein}; // Use HashVerifier, as reserializing may lose data, c.f. commit d3424243
verifier << index.pprev->GetBlockHash();
verifier >> blockundo;
uint256 hashChecksum;
filein >> hashChecksum;
// Verify checksum
if (hashChecksum != verifier.GetHash()) {
LogError("Checksum mismatch at %s while reading block undo", pos.ToString());
return false;
}
} catch (const std::exception& e) {
LogError("Deserialize or I/O error - %s at %s while reading block undo", e.what(), pos.ToString());
return false;
}
return true;
}
bool BlockManager::FlushUndoFile(int block_file, bool finalize)
{
FlatFilePos undo_pos_old(block_file, m_blockfile_info[block_file].nUndoSize);
if (!m_undo_file_seq.Flush(undo_pos_old, finalize)) {
m_opts.notifications.flushError(_("Flushing undo file to disk failed. This is likely the result of an I/O error."));
return false;
}
return true;
}
bool BlockManager::FlushBlockFile(int blockfile_num, bool fFinalize, bool finalize_undo)
{
bool success = true;
LOCK(cs_LastBlockFile);
if (m_blockfile_info.size() < 1) {
// Return if we haven't loaded any blockfiles yet. This happens during
// chainstate init, when we call ChainstateManager::MaybeRebalanceCaches() (which
// then calls FlushStateToDisk()), resulting in a call to this function before we
// have populated `m_blockfile_info` via LoadBlockIndexDB().
return true;
}
assert(static_cast<int>(m_blockfile_info.size()) > blockfile_num);
FlatFilePos block_pos_old(blockfile_num, m_blockfile_info[blockfile_num].nSize);
if (!m_block_file_seq.Flush(block_pos_old, fFinalize)) {
m_opts.notifications.flushError(_("Flushing block file to disk failed. This is likely the result of an I/O error."));
success = false;
}
// we do not always flush the undo file, as the chain tip may be lagging behind the incoming blocks,
// e.g. during IBD or a sync after a node going offline
if (!fFinalize || finalize_undo) {
if (!FlushUndoFile(blockfile_num, finalize_undo)) {
success = false;
}
}
return success;
}
BlockfileType BlockManager::BlockfileTypeForHeight(int height)
{
if (!m_snapshot_height) {
return BlockfileType::NORMAL;
}
return (height >= *m_snapshot_height) ? BlockfileType::ASSUMED : BlockfileType::NORMAL;
}
bool BlockManager::FlushChainstateBlockFile(int tip_height)
{
LOCK(cs_LastBlockFile);
auto& cursor = m_blockfile_cursors[BlockfileTypeForHeight(tip_height)];
// If the cursor does not exist, it means an assumeutxo snapshot is loaded,
// but no blocks past the snapshot height have been written yet, so there
// is no data associated with the chainstate, and it is safe not to flush.
if (cursor) {
return FlushBlockFile(cursor->file_num, /*fFinalize=*/false, /*finalize_undo=*/false);
}
// No need to log warnings in this case.
return true;
}
uint64_t BlockManager::CalculateCurrentUsage()
{
LOCK(cs_LastBlockFile);
uint64_t retval = 0;
for (const CBlockFileInfo& file : m_blockfile_info) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
void BlockManager::UnlinkPrunedFiles(const std::set<int>& setFilesToPrune) const
{
std::error_code ec;
for (std::set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
FlatFilePos pos(*it, 0);
const bool removed_blockfile{fs::remove(m_block_file_seq.FileName(pos), ec)};
const bool removed_undofile{fs::remove(m_undo_file_seq.FileName(pos), ec)};
if (removed_blockfile || removed_undofile) {
LogDebug(BCLog::BLOCKSTORAGE, "Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
}
AutoFile BlockManager::OpenBlockFile(const FlatFilePos& pos, bool fReadOnly) const
{
return AutoFile{m_block_file_seq.Open(pos, fReadOnly), m_obfuscation};
}
/** Open an undo file (rev?????.dat) */
AutoFile BlockManager::OpenUndoFile(const FlatFilePos& pos, bool fReadOnly) const
{
return AutoFile{m_undo_file_seq.Open(pos, fReadOnly), m_obfuscation};
}
fs::path BlockManager::GetBlockPosFilename(const FlatFilePos& pos) const
{
return m_block_file_seq.FileName(pos);
}
FlatFilePos BlockManager::FindNextBlockPos(unsigned int nAddSize, unsigned int nHeight, uint64_t nTime)
{
LOCK(cs_LastBlockFile);
const BlockfileType chain_type = BlockfileTypeForHeight(nHeight);
if (!m_blockfile_cursors[chain_type]) {
// If a snapshot is loaded during runtime, we may not have initialized this cursor yet.
assert(chain_type == BlockfileType::ASSUMED);
const auto new_cursor = BlockfileCursor{this->MaxBlockfileNum() + 1};
m_blockfile_cursors[chain_type] = new_cursor;
LogDebug(BCLog::BLOCKSTORAGE, "[%s] initializing blockfile cursor to %s\n", chain_type, new_cursor);
}
const int last_blockfile = m_blockfile_cursors[chain_type]->file_num;
int nFile = last_blockfile;
if (static_cast<int>(m_blockfile_info.size()) <= nFile) {
m_blockfile_info.resize(nFile + 1);
}
bool finalize_undo = false;
unsigned int max_blockfile_size{MAX_BLOCKFILE_SIZE};
// Use smaller blockfiles in test-only -fastprune mode - but avoid
// the possibility of having a block not fit into the block file.
if (m_opts.fast_prune) {
max_blockfile_size = 0x10000; // 64kiB
if (nAddSize >= max_blockfile_size) {
// dynamically adjust the blockfile size to be larger than the added size
max_blockfile_size = nAddSize + 1;
}
}
assert(nAddSize < max_blockfile_size);
while (m_blockfile_info[nFile].nSize + nAddSize >= max_blockfile_size) {
// when the undo file is keeping up with the block file, we want to flush it explicitly
// when it is lagging behind (more blocks arrive than are being connected), we let the
// undo block write case handle it
finalize_undo = (static_cast<int>(m_blockfile_info[nFile].nHeightLast) ==
Assert(m_blockfile_cursors[chain_type])->undo_height);
// Try the next unclaimed blockfile number
nFile = this->MaxBlockfileNum() + 1;
// Set to increment MaxBlockfileNum() for next iteration
m_blockfile_cursors[chain_type] = BlockfileCursor{nFile};
if (static_cast<int>(m_blockfile_info.size()) <= nFile) {
m_blockfile_info.resize(nFile + 1);
}
}
FlatFilePos pos;
pos.nFile = nFile;
pos.nPos = m_blockfile_info[nFile].nSize;
if (nFile != last_blockfile) {
LogDebug(BCLog::BLOCKSTORAGE, "Leaving block file %i: %s (onto %i) (height %i)\n",
last_blockfile, m_blockfile_info[last_blockfile].ToString(), nFile, nHeight);
// Do not propagate the return code. The flush concerns a previous block
// and undo file that has already been written to. If a flush fails
// here, and we crash, there is no expected additional block data
// inconsistency arising from the flush failure here. However, the undo
// data may be inconsistent after a crash if the flush is called during
// a reindex. A flush error might also leave some of the data files
// untrimmed.
if (!FlushBlockFile(last_blockfile, /*fFinalize=*/true, finalize_undo)) {
LogWarning(
"Failed to flush previous block file %05i (finalize=1, finalize_undo=%i) before opening new block file %05i\n",
last_blockfile, finalize_undo, nFile);
}
// No undo data yet in the new file, so reset our undo-height tracking.
m_blockfile_cursors[chain_type] = BlockfileCursor{nFile};
}
m_blockfile_info[nFile].AddBlock(nHeight, nTime);
m_blockfile_info[nFile].nSize += nAddSize;
bool out_of_space;
size_t bytes_allocated = m_block_file_seq.Allocate(pos, nAddSize, out_of_space);
if (out_of_space) {
m_opts.notifications.fatalError(_("Disk space is too low!"));
return {};
}
if (bytes_allocated != 0 && IsPruneMode()) {
m_check_for_pruning = true;
}
m_dirty_fileinfo.insert(nFile);
return pos;
}
void BlockManager::UpdateBlockInfo(const CBlock& block, unsigned int nHeight, const FlatFilePos& pos)
{
LOCK(cs_LastBlockFile);
// Update the cursor so it points to the last file.
const BlockfileType chain_type{BlockfileTypeForHeight(nHeight)};
auto& cursor{m_blockfile_cursors[chain_type]};
if (!cursor || cursor->file_num < pos.nFile) {
m_blockfile_cursors[chain_type] = BlockfileCursor{pos.nFile};
}
// Update the file information with the current block.
const unsigned int added_size = ::GetSerializeSize(TX_WITH_WITNESS(block));
const int nFile = pos.nFile;
if (static_cast<int>(m_blockfile_info.size()) <= nFile) {
m_blockfile_info.resize(nFile + 1);
}
m_blockfile_info[nFile].AddBlock(nHeight, block.GetBlockTime());
m_blockfile_info[nFile].nSize = std::max(pos.nPos + added_size, m_blockfile_info[nFile].nSize);
m_dirty_fileinfo.insert(nFile);
}
bool BlockManager::FindUndoPos(BlockValidationState& state, int nFile, FlatFilePos& pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
pos.nPos = m_blockfile_info[nFile].nUndoSize;
m_blockfile_info[nFile].nUndoSize += nAddSize;
m_dirty_fileinfo.insert(nFile);
bool out_of_space;
size_t bytes_allocated = m_undo_file_seq.Allocate(pos, nAddSize, out_of_space);
if (out_of_space) {
return FatalError(m_opts.notifications, state, _("Disk space is too low!"));
}
if (bytes_allocated != 0 && IsPruneMode()) {
m_check_for_pruning = true;
}
return true;
}
bool BlockManager::WriteBlockUndo(const CBlockUndo& blockundo, BlockValidationState& state, CBlockIndex& block)
{
AssertLockHeld(::cs_main);
const BlockfileType type = BlockfileTypeForHeight(block.nHeight);
auto& cursor = *Assert(WITH_LOCK(cs_LastBlockFile, return m_blockfile_cursors[type]));
// Write undo information to disk
if (block.GetUndoPos().IsNull()) {
FlatFilePos pos;
const auto blockundo_size{static_cast<uint32_t>(GetSerializeSize(blockundo))};
if (!FindUndoPos(state, block.nFile, pos, blockundo_size + UNDO_DATA_DISK_OVERHEAD)) {
LogError("FindUndoPos failed for %s while writing block undo", pos.ToString());
return false;
}
// Open history file to append
AutoFile file{OpenUndoFile(pos)};
if (file.IsNull()) {
LogError("OpenUndoFile failed for %s while writing block undo", pos.ToString());
return FatalError(m_opts.notifications, state, _("Failed to write undo data."));
}
{
BufferedWriter fileout{file};
// Write index header
fileout << GetParams().MessageStart() << blockundo_size;
pos.nPos += STORAGE_HEADER_BYTES;
{
// Calculate checksum
HashWriter hasher{};
hasher << block.pprev->GetBlockHash() << blockundo;
// Write undo data & checksum
fileout << blockundo << hasher.GetHash();
}
// BufferedWriter will flush pending data to file when fileout goes out of scope.
}
// Make sure that the file is closed before we call `FlushUndoFile`.
if (file.fclose() != 0) {
LogError("Failed to close block undo file %s: %s", pos.ToString(), SysErrorString(errno));
return FatalError(m_opts.notifications, state, _("Failed to close block undo file."));
}
// rev files are written in block height order, whereas blk files are written as blocks come in (often out of order)
// we want to flush the rev (undo) file once we've written the last block, which is indicated by the last height
// in the block file info as below; note that this does not catch the case where the undo writes are keeping up
// with the block writes (usually when a synced up node is getting newly mined blocks) -- this case is caught in
// the FindNextBlockPos function
if (pos.nFile < cursor.file_num && static_cast<uint32_t>(block.nHeight) == m_blockfile_info[pos.nFile].nHeightLast) {
// Do not propagate the return code, a failed flush here should not
// be an indication for a failed write. If it were propagated here,
// the caller would assume the undo data not to be written, when in
// fact it is. Note though, that a failed flush might leave the data
// file untrimmed.
if (!FlushUndoFile(pos.nFile, true)) {
LogWarning("Failed to flush undo file %05i\n", pos.nFile);
}
} else if (pos.nFile == cursor.file_num && block.nHeight > cursor.undo_height) {
cursor.undo_height = block.nHeight;
}
// update nUndoPos in block index
block.nUndoPos = pos.nPos;
block.nStatus |= BLOCK_HAVE_UNDO;
m_dirty_blockindex.insert(&block);
}
return true;
}
bool BlockManager::ReadBlock(CBlock& block, const FlatFilePos& pos, const std::optional<uint256>& expected_hash) const
{
block.SetNull();
// Open history file to read
const auto block_data{ReadRawBlock(pos)};
if (!block_data) {
return false;
}
try {
// Read block
SpanReader{*block_data} >> TX_WITH_WITNESS(block);
} catch (const std::exception& e) {
LogError("Deserialize or I/O error - %s at %s while reading block", e.what(), pos.ToString());
return false;
}
const auto block_hash{block.GetHash()};
// Check the header
if (!CheckProofOfWork(block_hash, block.nBits, GetConsensus())) {
LogError("Errors in block header at %s while reading block", pos.ToString());
return false;
}
// Signet only: check block solution
if (GetConsensus().signet_blocks && !CheckSignetBlockSolution(block, GetConsensus())) {
LogError("Errors in block solution at %s while reading block", pos.ToString());
return false;
}
if (expected_hash && block_hash != *expected_hash) {
LogError("GetHash() doesn't match index at %s while reading block (%s != %s)",
pos.ToString(), block_hash.ToString(), expected_hash->ToString());
return false;
}
return true;
}
bool BlockManager::ReadBlock(CBlock& block, const CBlockIndex& index) const
{
const FlatFilePos block_pos{WITH_LOCK(cs_main, return index.GetBlockPos())};
return ReadBlock(block, block_pos, index.GetBlockHash());
}
BlockManager::ReadRawBlockResult BlockManager::ReadRawBlock(const FlatFilePos& pos, std::optional<std::pair<size_t, size_t>> block_part) const
{
if (pos.nPos < STORAGE_HEADER_BYTES) {
// If nPos is less than STORAGE_HEADER_BYTES, we can't read the header that precedes the block data
// This would cause an unsigned integer underflow when trying to position the file cursor
// This can happen after pruning or default constructed positions
LogError("Failed for %s while reading raw block storage header", pos.ToString());
return util::Unexpected{ReadRawError::IO};
}
AutoFile filein{OpenBlockFile({pos.nFile, pos.nPos - STORAGE_HEADER_BYTES}, /*fReadOnly=*/true)};
if (filein.IsNull()) {
LogError("OpenBlockFile failed for %s while reading raw block", pos.ToString());
return util::Unexpected{ReadRawError::IO};
}
try {
MessageStartChars blk_start;
unsigned int blk_size;
filein >> blk_start >> blk_size;
if (blk_start != GetParams().MessageStart()) {
LogError("Block magic mismatch for %s: %s versus expected %s while reading raw block",
pos.ToString(), HexStr(blk_start), HexStr(GetParams().MessageStart()));
return util::Unexpected{ReadRawError::IO};
}
if (blk_size > MAX_SIZE) {
LogError("Block data is larger than maximum deserialization size for %s: %s versus %s while reading raw block",
pos.ToString(), blk_size, MAX_SIZE);
return util::Unexpected{ReadRawError::IO};
}
if (block_part) {
const auto [offset, size]{*block_part};
if (size == 0 || SaturatingAdd(offset, size) > blk_size) {
return util::Unexpected{ReadRawError::BadPartRange}; // Avoid logging - offset/size come from untrusted REST input
}
filein.seek(offset, SEEK_CUR);
blk_size = size;
}
std::vector<std::byte> data(blk_size); // Zeroing of memory is intentional here
filein.read(data);
return data;
} catch (const std::exception& e) {
LogError("Read from block file failed: %s for %s while reading raw block", e.what(), pos.ToString());
return util::Unexpected{ReadRawError::IO};
}
}
FlatFilePos BlockManager::WriteBlock(const CBlock& block, int nHeight)
{
const unsigned int block_size{static_cast<unsigned int>(GetSerializeSize(TX_WITH_WITNESS(block)))};
FlatFilePos pos{FindNextBlockPos(block_size + STORAGE_HEADER_BYTES, nHeight, block.GetBlockTime())};
if (pos.IsNull()) {
LogError("FindNextBlockPos failed for %s while writing block", pos.ToString());
return FlatFilePos();
}
AutoFile file{OpenBlockFile(pos, /*fReadOnly=*/false)};
if (file.IsNull()) {
LogError("OpenBlockFile failed for %s while writing block", pos.ToString());
m_opts.notifications.fatalError(_("Failed to write block."));
return FlatFilePos();
}
{
BufferedWriter fileout{file};
// Write index header
fileout << GetParams().MessageStart() << block_size;
pos.nPos += STORAGE_HEADER_BYTES;
// Write block
fileout << TX_WITH_WITNESS(block);
}
if (file.fclose() != 0) {
LogError("Failed to close block file %s: %s", pos.ToString(), SysErrorString(errno));
m_opts.notifications.fatalError(_("Failed to close file when writing block."));
return FlatFilePos();
}
return pos;
}
static auto InitBlocksdirXorKey(const BlockManager::Options& opts)
{
// Bytes are serialized without length indicator, so this is also the exact
// size of the XOR-key file.
std::array<std::byte, Obfuscation::KEY_SIZE> obfuscation{};
// Consider this to be the first run if the blocksdir contains only hidden
// files (those which start with a .). Checking for a fully-empty dir would
// be too aggressive as a .lock file may have already been written.
bool first_run = true;
for (const auto& entry : fs::directory_iterator(opts.blocks_dir)) {
const std::string path = fs::PathToString(entry.path().filename());
if (!entry.is_regular_file() || !path.starts_with('.')) {
first_run = false;
break;
}
}
if (opts.use_xor && first_run) {
// Only use random fresh key when the boolean option is set and on the
// very first start of the program.
FastRandomContext{}.fillrand(obfuscation);
}
const fs::path xor_key_path{opts.blocks_dir / "xor.dat"};
if (fs::exists(xor_key_path)) {
// A pre-existing xor key file has priority.
AutoFile xor_key_file{fsbridge::fopen(xor_key_path, "rb")};
xor_key_file >> obfuscation;
} else {
// Create initial or missing xor key file
AutoFile xor_key_file{fsbridge::fopen(xor_key_path,
#ifdef __MINGW64__
"wb" // Temporary workaround for https://github.com/bitcoin/bitcoin/issues/30210
#else
"wbx"
#endif
)};
xor_key_file << obfuscation;
if (xor_key_file.fclose() != 0) {
throw std::runtime_error{strprintf("Error closing XOR key file %s: %s",
fs::PathToString(xor_key_path),
SysErrorString(errno))};
}
}
// If the user disabled the key, it must be zero.
if (!opts.use_xor && obfuscation != decltype(obfuscation){}) {
throw std::runtime_error{
strprintf("The blocksdir XOR-key can not be disabled when a random key was already stored! "
"Stored key: '%s', stored path: '%s'.",
HexStr(obfuscation), fs::PathToString(xor_key_path)),
};
}
LogInfo("Using obfuscation key for blocksdir *.dat files (%s): '%s'\n", fs::PathToString(opts.blocks_dir), HexStr(obfuscation));
return Obfuscation{obfuscation};
}
BlockManager::BlockManager(const util::SignalInterrupt& interrupt, Options opts)
: m_prune_mode{opts.prune_target > 0},
m_obfuscation{InitBlocksdirXorKey(opts)},
m_opts{std::move(opts)},
m_block_file_seq{FlatFileSeq{m_opts.blocks_dir, "blk", m_opts.fast_prune ? 0x4000 /* 16kB */ : BLOCKFILE_CHUNK_SIZE}},
m_undo_file_seq{FlatFileSeq{m_opts.blocks_dir, "rev", UNDOFILE_CHUNK_SIZE}},
m_interrupt{interrupt}
{
m_block_tree_db = std::make_unique<BlockTreeDB>(m_opts.block_tree_db_params);
if (m_opts.block_tree_db_params.wipe_data) {
m_block_tree_db->WriteReindexing(true);
m_blockfiles_indexed = false;
// If we're reindexing in prune mode, wipe away unusable block files and all undo data files
if (m_prune_mode) {
CleanupBlockRevFiles();
}
}
}
class ImportingNow
{
std::atomic<bool>& m_importing;
public:
ImportingNow(std::atomic<bool>& importing) : m_importing{importing}
{
assert(m_importing == false);
m_importing = true;
}
~ImportingNow()
{
assert(m_importing == true);
m_importing = false;
}
};
void ImportBlocks(ChainstateManager& chainman, std::span<const fs::path> import_paths)
{
ImportingNow imp{chainman.m_blockman.m_importing};
// -reindex
if (!chainman.m_blockman.m_blockfiles_indexed) {
int total_files{0};
while (fs::exists(chainman.m_blockman.GetBlockPosFilename(FlatFilePos(total_files, 0)))) {
total_files++;
}
// Map of disk positions for blocks with unknown parent (only used for reindex);
// parent hash -> child disk position, multiple children can have the same parent.
std::multimap<uint256, FlatFilePos> blocks_with_unknown_parent;
for (int nFile{0}; nFile < total_files; ++nFile) {
FlatFilePos pos(nFile, 0);
AutoFile file{chainman.m_blockman.OpenBlockFile(pos, /*fReadOnly=*/true)};
if (file.IsNull()) {
break; // This error is logged in OpenBlockFile
}
LogInfo("Reindexing block file blk%05u.dat (%d%% complete)...", (unsigned int)nFile, nFile * 100 / total_files);
chainman.LoadExternalBlockFile(file, &pos, &blocks_with_unknown_parent);
if (chainman.m_interrupt) {
LogInfo("Interrupt requested. Exit reindexing.");
return;
}
}
WITH_LOCK(::cs_main, chainman.m_blockman.m_block_tree_db->WriteReindexing(false));
chainman.m_blockman.m_blockfiles_indexed = true;
LogInfo("Reindexing finished");
// To avoid ending up in a situation without genesis block, re-try initializing (no-op if reindexing worked):
chainman.ActiveChainstate().LoadGenesisBlock();
}
// -loadblock=
for (const fs::path& path : import_paths) {
AutoFile file{fsbridge::fopen(path, "rb")};
if (!file.IsNull()) {
LogInfo("Importing blocks file %s...", fs::PathToString(path));
chainman.LoadExternalBlockFile(file);
if (chainman.m_interrupt) {
LogInfo("Interrupt requested. Exit block importing.");
return;
}
} else {
LogWarning("Could not open blocks file %s", fs::PathToString(path));
}
}
// scan for better chains in the block chain database, that are not yet connected in the active best chain
if (auto result = chainman.ActivateBestChains(); !result) {
chainman.GetNotifications().fatalError(util::ErrorString(result));
}
// End scope of ImportingNow
}
std::ostream& operator<<(std::ostream& os, const BlockfileType& type) {
switch(type) {
case BlockfileType::NORMAL: os << "normal"; break;
case BlockfileType::ASSUMED: os << "assumed"; break;
default: os.setstate(std::ios_base::failbit);
}
return os;
}
std::ostream& operator<<(std::ostream& os, const BlockfileCursor& cursor) {
os << strprintf("BlockfileCursor(file_num=%d, undo_height=%d)", cursor.file_num, cursor.undo_height);
return os;
}
} // namespace node