Files
bitcoin/src/crypto/siphash.cpp
Lőrinc 6eb5ba5691 refactor: extract shared SipHash state into SipHashState
Split the repeated `SipHash` v[0..3] initialization into a small `SipHashState` helper that is used by both `CSipHasher` and `PresaltedSipHasher`.

Added explanatory comments to clarify behavior, documenting the equivalence of `PresaltedSipHasher` `operator()` overloads to `CSipHasher` usage.

Co-authored-by: Ryan Ofsky <ryan@ofsky.org>
2025-12-09 17:17:47 +01:00

163 lines
3.4 KiB
C++

// Copyright (c) 2016-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/siphash.h>
#include <uint256.h>
#include <bit>
#include <cassert>
#include <span>
#define SIPROUND do { \
v0 += v1; v1 = std::rotl(v1, 13); v1 ^= v0; \
v0 = std::rotl(v0, 32); \
v2 += v3; v3 = std::rotl(v3, 16); v3 ^= v2; \
v0 += v3; v3 = std::rotl(v3, 21); v3 ^= v0; \
v2 += v1; v1 = std::rotl(v1, 17); v1 ^= v2; \
v2 = std::rotl(v2, 32); \
} while (0)
CSipHasher::CSipHasher(uint64_t k0, uint64_t k1) : m_state{k0, k1} {}
CSipHasher& CSipHasher::Write(uint64_t data)
{
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
assert(m_count % 8 == 0);
v3 ^= data;
SIPROUND;
SIPROUND;
v0 ^= data;
m_state.v[0] = v0;
m_state.v[1] = v1;
m_state.v[2] = v2;
m_state.v[3] = v3;
m_count += 8;
return *this;
}
CSipHasher& CSipHasher::Write(std::span<const unsigned char> data)
{
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
uint64_t t = m_tmp;
uint8_t c = m_count;
while (data.size() > 0) {
t |= uint64_t{data.front()} << (8 * (c % 8));
c++;
if ((c & 7) == 0) {
v3 ^= t;
SIPROUND;
SIPROUND;
v0 ^= t;
t = 0;
}
data = data.subspan(1);
}
m_state.v[0] = v0;
m_state.v[1] = v1;
m_state.v[2] = v2;
m_state.v[3] = v3;
m_count = c;
m_tmp = t;
return *this;
}
uint64_t CSipHasher::Finalize() const
{
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
uint64_t t = m_tmp | (((uint64_t)m_count) << 56);
v3 ^= t;
SIPROUND;
SIPROUND;
v0 ^= t;
v2 ^= 0xFF;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
return v0 ^ v1 ^ v2 ^ v3;
}
uint64_t PresaltedSipHasher::operator()(const uint256& val) const noexcept
{
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
uint64_t d = val.GetUint64(0);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(1);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(2);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(3);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
v3 ^= (uint64_t{4}) << 59;
SIPROUND;
SIPROUND;
v0 ^= (uint64_t{4}) << 59;
v2 ^= 0xFF;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
return v0 ^ v1 ^ v2 ^ v3;
}
/** Specialized implementation for efficiency */
uint64_t PresaltedSipHasher::operator()(const uint256& val, uint32_t extra) const noexcept
{
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
uint64_t d = val.GetUint64(0);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(1);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(2);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = val.GetUint64(3);
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
d = ((uint64_t{36}) << 56) | extra;
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;
v2 ^= 0xFF;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
return v0 ^ v1 ^ v2 ^ v3;
}