Files
bitcoin/src/test
Ava Chow 7143d43884 Merge bitcoin/bitcoin#28948: v3 transaction policy for anti-pinning
29029df5c7 [doc] v3 signaling in mempool-replacements.md (glozow)
e643ea795e [fuzz] v3 transactions and sigop-adjusted vsize (glozow)
1fd16b5c62 [functional test] v3 transaction submission (glozow)
27c8786ba9 test framework: Add and use option for tx-version in MiniWallet methods (MarcoFalke)
9a1fea55b2 [policy/validation] allow v3 transactions with certain restrictions (glozow)
eb8d5a2e7d [policy] add v3 policy rules (glozow)
9a29d470fb [rpc] return full string for package_msg and package-error (glozow)
158623b8e0 [refactor] change Workspace::m_conflicts and adjacent funcs/structs to use Txid (glozow)

Pull request description:

  See #27463 for overall package relay tracking.

  Delving Bitcoin discussion thread: https://delvingbitcoin.org/t/v3-transaction-policy-for-anti-pinning/340
  Delving Bitcoin discussion for LN usage: https://delvingbitcoin.org/t/lightning-transactions-with-v3-and-ephemeral-anchors/418

  Rationale:
  - There are various pinning problems with RBF and our general ancestor/descendant limits. These policies help mitigate many pinning attacks and make package RBF feasible (see #28984 which implements package RBF on top of this). I would focus the most here on Rule 3 pinning. [1][2]
  - Switching to a cluster-based mempool (see #27677 and #28676) requires the removal of CPFP carve out, which applications depend on. V3 + package RBF + ephemeral anchors + 1-parent-1-child package relay provides an intermediate solution.

  V3 policy is for "Priority Transactions." [3][4] It allows users to opt in to more restrictive topological limits for shared transactions, in exchange for the more robust fee-bumping abilities that offers. Even though we don't have cluster limits, we are able to treat these transactions as having as having a maximum cluster size of 2.

  Immediate benefits:

  - You can presign a transaction with 0 fees (not just 1sat/vB!) and add a fee-bump later.
  - Rule 3 pinning is reduced by a significant amount, since the attacker can only attach a maximum of 1000vB to your shared transaction.

  This also enables some other cool things (again see #27463 for overall roadmap):
  - Ephemeral Anchors
  - Package RBF for these 1-parent-1-child packages. That means e.g. a commitment tx + child can replace another commitment tx using the child's fees.
  - We can transition to a "single anchor" universe without worrying about package limit pinning. So current users of CPFP carve out would have something else to use.
  - We can switch to a cluster-based mempool [5] (#27677 #28676), which removes CPFP carve out [6].

  [1]: Original mailing list post and discussion about RBF pinning problems https://gist.github.com/glozow/25d9662c52453bd08b4b4b1d3783b9ff, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-January/019817.html
  [2]: A FAQ is "we need this for cluster mempool, but is this still necessary afterwards?" There are some pinning issues that are fixed here and not fully fixed in cluster mempool, so we will still want this or something similar afterward.
  [3]: Mailing list post for v3 https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-September/020937.html
  [4]: Original PR #25038 also contains a lot of the discussion
  [5]: https://delvingbitcoin.org/t/an-overview-of-the-cluster-mempool-proposal/393/7
  [6]: https://delvingbitcoin.org/t/an-overview-of-the-cluster-mempool-proposal/393#the-cpfp-carveout-rule-can-no-longer-be-supported-12

ACKs for top commit:
  sdaftuar:
    ACK 29029df5c7
  achow101:
    ACK 29029df5c7
  instagibbs:
    ACK 29029df5c7 modulo that

Tree-SHA512: 9664b078890cfdca2a146439f8835c9d9ab483f43b30af8c7cd6962f09aa557fb1ce7689d5e130a2ec142235dbc8f21213881baa75241c5881660f9008d68450
2024-02-09 23:37:57 -05:00
..
2023-10-12 11:27:19 +02:00
2023-11-30 11:27:54 +01:00
2023-11-21 13:15:44 +00:00
2023-11-14 08:45:32 +10:00
2023-11-21 13:15:44 +00:00
2023-11-30 11:28:19 +01:00
2023-10-12 11:27:19 +02:00
2023-11-07 10:21:51 +09:00

Unit tests

The sources in this directory are unit test cases. Boost includes a unit testing framework, and since Bitcoin Core already uses Boost, it makes sense to simply use this framework rather than require developers to configure some other framework (we want as few impediments to creating unit tests as possible).

The build system is set up to compile an executable called test_bitcoin that runs all of the unit tests. The main source file for the test library is found in util/setup_common.cpp.

Compiling/running unit tests

Unit tests will be automatically compiled if dependencies were met in ./configure and tests weren't explicitly disabled.

After configuring, they can be run with make check, which includes unit tests from subtrees, or make && make -C src check-unit for just the unit tests.

To run the unit tests manually, launch src/test/test_bitcoin. To recompile after a test file was modified, run make and then run the test again. If you modify a non-test file, use make -C src/test to recompile only what's needed to run the unit tests.

To add more unit tests, add BOOST_AUTO_TEST_CASE functions to the existing .cpp files in the test/ directory or add new .cpp files that implement new BOOST_AUTO_TEST_SUITE sections.

To run the GUI unit tests manually, launch src/qt/test/test_bitcoin-qt

To add more GUI unit tests, add them to the src/qt/test/ directory and the src/qt/test/test_main.cpp file.

Running individual tests

test_bitcoin accepts the command line arguments from the boost framework. For example, to run just the getarg_tests suite of tests:

test_bitcoin --log_level=all --run_test=getarg_tests

log_level controls the verbosity of the test framework, which logs when a test case is entered, for example. test_bitcoin also accepts the command line arguments accepted by bitcoind. Use -- to separate both types of arguments:

test_bitcoin --log_level=all --run_test=getarg_tests -- -printtoconsole=1

The -printtoconsole=1 after the two dashes redirects the debug log, which would normally go to a file in the test datadir (BasicTestingSetup::m_path_root), to the standard terminal output.

... or to run just the doubledash test:

test_bitcoin --run_test=getarg_tests/doubledash

Run test_bitcoin --help for the full list.

Adding test cases

To add a new unit test file to our test suite you need to add the file to src/Makefile.test.include. The pattern is to create one test file for each class or source file for which you want to create unit tests. The file naming convention is <source_filename>_tests.cpp and such files should wrap their tests in a test suite called <source_filename>_tests. For an example of this pattern, see uint256_tests.cpp.

Logging and debugging in unit tests

make check will write to a log file foo_tests.cpp.log and display this file on failure. For running individual tests verbosely, refer to the section above.

To write to logs from unit tests you need to use specific message methods provided by Boost. The simplest is BOOST_TEST_MESSAGE.

For debugging you can launch the test_bitcoin executable with gdb or lldb and start debugging, just like you would with any other program:

gdb src/test/test_bitcoin

Segmentation faults

If you hit a segmentation fault during a test run, you can diagnose where the fault is happening by running gdb ./src/test/test_bitcoin and then using the bt command within gdb.

Another tool that can be used to resolve segmentation faults is valgrind.

If for whatever reason you want to produce a core dump file for this fault, you can do that as well. By default, the boost test runner will intercept system errors and not produce a core file. To bypass this, add --catch_system_errors=no to the test_bitcoin arguments and ensure that your ulimits are set properly (e.g. ulimit -c unlimited).

Running the tests and hitting a segmentation fault should now produce a file called core (on Linux platforms, the file name will likely depend on the contents of /proc/sys/kernel/core_pattern).

You can then explore the core dump using

gdb src/test/test_bitcoin core

(gbd) bt  # produce a backtrace for where a segfault occurred