Files
bitcoin/src/node/blockstorage.cpp
MarcoFalke c561f2f06e Merge bitcoin/bitcoin#23497: Add src/node/ and src/wallet/ code to node:: and wallet:: namespaces
e5b6aef612 Move CBlockFileInfo::ToString method where class is declared (Russell Yanofsky)
f7086fd8ff Add src/wallet/* code to wallet:: namespace (Russell Yanofsky)
90fc8b089d Add src/node/* code to node:: namespace (Russell Yanofsky)

Pull request description:

  There are no code changes, this is just adding `namespace` and `using` declarations and `node::` or `wallet::` qualifiers in some places.

  Motivations for this change are:

  - To make it easier to see when node and wallet code is being accessed places where it shouldn't be. For example if GUI code is accessing node and wallet internals or if wallet and node code are referencing each other.
  - To make source code organization clearer ([#15732](https://github.com/bitcoin/bitcoin/issues/15732)), being able to know that `wallet::` code is in `src/wallet/`, `node::` code is in `src/node/`, `init::` code is in `src/init/`, `util::` code is in `src/util/`, etc.

  Reviewing with `git log -p -n1 -U0 --word-diff-regex=.` can be helpful to verify this is only updating declarations, not changing code.

ACKs for top commit:
  achow101:
    ACK e5b6aef612
  MarcoFalke:
    Concept ACK e5b6aef612 🍨

Tree-SHA512: 3797745c90246794e2d55a2ee6e8b0ad5c811e4e03a242d3fdfeb68032f8787f0d48ed4097f6b7730f540220c0af99ef423cd9dbe7f76b2ec12e769a757a2c8d
2022-01-11 11:11:00 +01:00

940 lines
35 KiB
C++

// Copyright (c) 2011-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/blockstorage.h>
#include <chain.h>
#include <chainparams.h>
#include <clientversion.h>
#include <consensus/validation.h>
#include <flatfile.h>
#include <fs.h>
#include <hash.h>
#include <pow.h>
#include <reverse_iterator.h>
#include <shutdown.h>
#include <signet.h>
#include <streams.h>
#include <undo.h>
#include <util/syscall_sandbox.h>
#include <util/system.h>
#include <validation.h>
namespace node {
std::atomic_bool fImporting(false);
std::atomic_bool fReindex(false);
bool fHavePruned = false;
bool fPruneMode = false;
uint64_t nPruneTarget = 0;
static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly = false);
static FlatFileSeq BlockFileSeq();
static FlatFileSeq UndoFileSeq();
CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
AssertLockHeld(cs_main);
BlockMap::const_iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : it->second;
}
CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = m_block_index.find(hash);
if (it != m_block_index.end()) {
return it->second;
}
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
if (miPrev != m_block_index.end()) {
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
m_dirty_blockindex.insert(pindexNew);
return pindexNew;
}
void BlockManager::PruneOneBlockFile(const int fileNumber)
{
AssertLockHeld(cs_main);
LOCK(cs_LastBlockFile);
for (const auto& entry : m_block_index) {
CBlockIndex* pindex = entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
m_dirty_blockindex.insert(pindex);
// Prune from m_blocks_unlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// m_blocks_unlinked or setBlockIndexCandidates.
auto range = m_blocks_unlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator _it = range.first;
range.first++;
if (_it->second == pindex) {
m_blocks_unlinked.erase(_it);
}
}
}
}
m_blockfile_info[fileNumber].SetNull();
m_dirty_fileinfo.insert(fileNumber);
}
void BlockManager::FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height)
{
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0) {
return;
}
// last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP);
int count = 0;
for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) {
if (m_blockfile_info[fileNumber].nSize == 0 || m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}
void BlockManager::FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0 || nPruneTarget == 0) {
return;
}
if ((uint64_t)chain_tip_height <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune{(unsigned)std::min(prune_height, chain_tip_height - static_cast<int>(MIN_BLOCKS_TO_KEEP))};
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
if (is_ibd) {
// Since this is only relevant during IBD, we use a fixed 10%
nBuffer += nPruneTarget / 10;
}
for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) {
nBytesToPrune = m_blockfile_info[fileNumber].nSize + m_blockfile_info[fileNumber].nUndoSize;
if (m_blockfile_info[fileNumber].nSize == 0) {
continue;
}
if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target?
break;
}
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
CBlockIndex* BlockManager::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull()) {
return nullptr;
}
// Return existing
BlockMap::iterator mi = m_block_index.find(hash);
if (mi != m_block_index.end()) {
return (*mi).second;
}
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool BlockManager::LoadBlockIndex(
const Consensus::Params& consensus_params,
ChainstateManager& chainman)
{
if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) {
return false;
}
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex*>> vSortedByHeight;
vSortedByHeight.reserve(m_block_index.size());
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
// Find start of assumed-valid region.
int first_assumed_valid_height = std::numeric_limits<int>::max();
for (const auto& [height, block] : vSortedByHeight) {
if (block->IsAssumedValid()) {
auto chainstates = chainman.GetAll();
// If we encounter an assumed-valid block index entry, ensure that we have
// one chainstate that tolerates assumed-valid entries and another that does
// not (i.e. the background validation chainstate), since assumed-valid
// entries should always be pending validation by a fully-validated chainstate.
auto any_chain = [&](auto fnc) { return std::any_of(chainstates.cbegin(), chainstates.cend(), fnc); };
assert(any_chain([](auto chainstate) { return chainstate->reliesOnAssumedValid(); }));
assert(any_chain([](auto chainstate) { return !chainstate->reliesOnAssumedValid(); }));
first_assumed_valid_height = height;
break;
}
}
for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight) {
if (ShutdownRequested()) return false;
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point, or
// blocks that are assumed-valid on the basis of snapshot load (see
// PopulateAndValidateSnapshot()).
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx > 0) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
m_dirty_blockindex.insert(pindex);
}
if (pindex->IsAssumedValid() ||
(pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
(pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) {
// Fill each chainstate's block candidate set. Only add assumed-valid
// blocks to the tip candidate set if the chainstate is allowed to rely on
// assumed-valid blocks.
//
// If all setBlockIndexCandidates contained the assumed-valid blocks, the
// background chainstate's ActivateBestChain() call would add assumed-valid
// blocks to the chain (based on how FindMostWorkChain() works). Obviously
// we don't want this since the purpose of the background validation chain
// is to validate assued-valid blocks.
//
// Note: This is considering all blocks whose height is greater or equal to
// the first assumed-valid block to be assumed-valid blocks, and excluding
// them from the background chainstate's setBlockIndexCandidates set. This
// does mean that some blocks which are not technically assumed-valid
// (later blocks on a fork beginning before the first assumed-valid block)
// might not get added to the the background chainstate, but this is ok,
// because they will still be attached to the active chainstate if they
// actually contain more work.
//
// Instead of this height-based approach, an earlier attempt was made at
// detecting "holistically" whether the block index under consideration
// relied on an assumed-valid ancestor, but this proved to be too slow to
// be practical.
for (CChainState* chainstate : chainman.GetAll()) {
if (chainstate->reliesOnAssumedValid() ||
pindex->nHeight < first_assumed_valid_height) {
chainstate->setBlockIndexCandidates.insert(pindex);
}
}
}
if (pindex->nStatus & BLOCK_FAILED_MASK && (!chainman.m_best_invalid || pindex->nChainWork > chainman.m_best_invalid->nChainWork)) {
chainman.m_best_invalid = pindex;
}
if (pindex->pprev) {
pindex->BuildSkip();
}
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
return true;
}
void BlockManager::Unload()
{
m_blocks_unlinked.clear();
for (const BlockMap::value_type& entry : m_block_index) {
delete entry.second;
}
m_block_index.clear();
m_blockfile_info.clear();
m_last_blockfile = 0;
m_dirty_blockindex.clear();
m_dirty_fileinfo.clear();
}
bool BlockManager::WriteBlockIndexDB()
{
AssertLockHeld(::cs_main);
std::vector<std::pair<int, const CBlockFileInfo*>> vFiles;
vFiles.reserve(m_dirty_fileinfo.size());
for (std::set<int>::iterator it = m_dirty_fileinfo.begin(); it != m_dirty_fileinfo.end();) {
vFiles.push_back(std::make_pair(*it, &m_blockfile_info[*it]));
m_dirty_fileinfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(m_dirty_blockindex.size());
for (std::set<CBlockIndex*>::iterator it = m_dirty_blockindex.begin(); it != m_dirty_blockindex.end();) {
vBlocks.push_back(*it);
m_dirty_blockindex.erase(it++);
}
if (!m_block_tree_db->WriteBatchSync(vFiles, m_last_blockfile, vBlocks)) {
return false;
}
return true;
}
bool BlockManager::LoadBlockIndexDB(ChainstateManager& chainman)
{
if (!LoadBlockIndex(::Params().GetConsensus(), chainman)) {
return false;
}
// Load block file info
m_block_tree_db->ReadLastBlockFile(m_last_blockfile);
m_blockfile_info.resize(m_last_blockfile + 1);
LogPrintf("%s: last block file = %i\n", __func__, m_last_blockfile);
for (int nFile = 0; nFile <= m_last_blockfile; nFile++) {
m_block_tree_db->ReadBlockFileInfo(nFile, m_blockfile_info[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, m_blockfile_info[m_last_blockfile].ToString());
for (int nFile = m_last_blockfile + 1; true; nFile++) {
CBlockFileInfo info;
if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
m_blockfile_info.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) {
FlatFilePos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned) {
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
}
// Check whether we need to continue reindexing
bool fReindexing = false;
m_block_tree_db->ReadReindexing(fReindexing);
if (fReindexing) fReindex = true;
return true;
}
CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data)
{
const MapCheckpoints& checkpoints = data.mapCheckpoints;
for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints)) {
const uint256& hash = i.second;
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
return pindex;
}
}
return nullptr;
}
bool IsBlockPruned(const CBlockIndex* pblockindex)
{
return (fHavePruned && !(pblockindex->nStatus & BLOCK_HAVE_DATA) && pblockindex->nTx > 0);
}
// If we're using -prune with -reindex, then delete block files that will be ignored by the
// reindex. Since reindexing works by starting at block file 0 and looping until a blockfile
// is missing, do the same here to delete any later block files after a gap. Also delete all
// rev files since they'll be rewritten by the reindex anyway. This ensures that m_blockfile_info
// is in sync with what's actually on disk by the time we start downloading, so that pruning
// works correctly.
void CleanupBlockRevFiles()
{
std::map<std::string, fs::path> mapBlockFiles;
// Glob all blk?????.dat and rev?????.dat files from the blocks directory.
// Remove the rev files immediately and insert the blk file paths into an
// ordered map keyed by block file index.
LogPrintf("Removing unusable blk?????.dat and rev?????.dat files for -reindex with -prune\n");
fs::path blocksdir = gArgs.GetBlocksDirPath();
for (fs::directory_iterator it(blocksdir); it != fs::directory_iterator(); it++) {
const std::string path = fs::PathToString(it->path().filename());
if (fs::is_regular_file(*it) &&
path.length() == 12 &&
path.substr(8,4) == ".dat")
{
if (path.substr(0, 3) == "blk") {
mapBlockFiles[path.substr(3, 5)] = it->path();
} else if (path.substr(0, 3) == "rev") {
remove(it->path());
}
}
}
// Remove all block files that aren't part of a contiguous set starting at
// zero by walking the ordered map (keys are block file indices) by
// keeping a separate counter. Once we hit a gap (or if 0 doesn't exist)
// start removing block files.
int nContigCounter = 0;
for (const std::pair<const std::string, fs::path>& item : mapBlockFiles) {
if (LocaleIndependentAtoi<int>(item.first) == nContigCounter) {
nContigCounter++;
continue;
}
remove(item.second);
}
}
CBlockFileInfo* BlockManager::GetBlockFileInfo(size_t n)
{
LOCK(cs_LastBlockFile);
return &m_blockfile_info.at(n);
}
static bool UndoWriteToDisk(const CBlockUndo& blockundo, FlatFilePos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull()) {
return error("%s: OpenUndoFile failed", __func__);
}
// Write index header
unsigned int nSize = GetSerializeSize(blockundo, fileout.GetVersion());
fileout << messageStart << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0) {
return error("%s: ftell failed", __func__);
}
pos.nPos = (unsigned int)fileOutPos;
fileout << blockundo;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
fileout << hasher.GetHash();
return true;
}
bool UndoReadFromDisk(CBlockUndo& blockundo, const CBlockIndex* pindex)
{
FlatFilePos pos = pindex->GetUndoPos();
if (pos.IsNull()) {
return error("%s: no undo data available", __func__);
}
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) {
return error("%s: OpenUndoFile failed", __func__);
}
// Read block
uint256 hashChecksum;
CHashVerifier<CAutoFile> verifier(&filein); // We need a CHashVerifier as reserializing may lose data
try {
verifier << pindex->pprev->GetBlockHash();
verifier >> blockundo;
filein >> hashChecksum;
} catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
if (hashChecksum != verifier.GetHash()) {
return error("%s: Checksum mismatch", __func__);
}
return true;
}
void BlockManager::FlushUndoFile(int block_file, bool finalize)
{
FlatFilePos undo_pos_old(block_file, m_blockfile_info[block_file].nUndoSize);
if (!UndoFileSeq().Flush(undo_pos_old, finalize)) {
AbortNode("Flushing undo file to disk failed. This is likely the result of an I/O error.");
}
}
void BlockManager::FlushBlockFile(bool fFinalize, bool finalize_undo)
{
LOCK(cs_LastBlockFile);
FlatFilePos block_pos_old(m_last_blockfile, m_blockfile_info[m_last_blockfile].nSize);
if (!BlockFileSeq().Flush(block_pos_old, fFinalize)) {
AbortNode("Flushing block file to disk failed. This is likely the result of an I/O error.");
}
// we do not always flush the undo file, as the chain tip may be lagging behind the incoming blocks,
// e.g. during IBD or a sync after a node going offline
if (!fFinalize || finalize_undo) FlushUndoFile(m_last_blockfile, finalize_undo);
}
uint64_t BlockManager::CalculateCurrentUsage()
{
LOCK(cs_LastBlockFile);
uint64_t retval = 0;
for (const CBlockFileInfo& file : m_blockfile_info) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
void UnlinkPrunedFiles(const std::set<int>& setFilesToPrune)
{
for (std::set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
FlatFilePos pos(*it, 0);
fs::remove(BlockFileSeq().FileName(pos));
fs::remove(UndoFileSeq().FileName(pos));
LogPrint(BCLog::BLOCKSTORE, "Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
static FlatFileSeq BlockFileSeq()
{
return FlatFileSeq(gArgs.GetBlocksDirPath(), "blk", gArgs.GetBoolArg("-fastprune", false) ? 0x4000 /* 16kb */ : BLOCKFILE_CHUNK_SIZE);
}
static FlatFileSeq UndoFileSeq()
{
return FlatFileSeq(gArgs.GetBlocksDirPath(), "rev", UNDOFILE_CHUNK_SIZE);
}
FILE* OpenBlockFile(const FlatFilePos& pos, bool fReadOnly)
{
return BlockFileSeq().Open(pos, fReadOnly);
}
/** Open an undo file (rev?????.dat) */
static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly)
{
return UndoFileSeq().Open(pos, fReadOnly);
}
fs::path GetBlockPosFilename(const FlatFilePos& pos)
{
return BlockFileSeq().FileName(pos);
}
bool BlockManager::FindBlockPos(FlatFilePos& pos, unsigned int nAddSize, unsigned int nHeight, CChain& active_chain, uint64_t nTime, bool fKnown)
{
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : m_last_blockfile;
if (m_blockfile_info.size() <= nFile) {
m_blockfile_info.resize(nFile + 1);
}
bool finalize_undo = false;
if (!fKnown) {
while (m_blockfile_info[nFile].nSize + nAddSize >= (gArgs.GetBoolArg("-fastprune", false) ? 0x10000 /* 64kb */ : MAX_BLOCKFILE_SIZE)) {
// when the undo file is keeping up with the block file, we want to flush it explicitly
// when it is lagging behind (more blocks arrive than are being connected), we let the
// undo block write case handle it
finalize_undo = (m_blockfile_info[nFile].nHeightLast == (unsigned int)active_chain.Tip()->nHeight);
nFile++;
if (m_blockfile_info.size() <= nFile) {
m_blockfile_info.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = m_blockfile_info[nFile].nSize;
}
if ((int)nFile != m_last_blockfile) {
if (!fKnown) {
LogPrint(BCLog::BLOCKSTORE, "Leaving block file %i: %s\n", m_last_blockfile, m_blockfile_info[m_last_blockfile].ToString());
}
FlushBlockFile(!fKnown, finalize_undo);
m_last_blockfile = nFile;
}
m_blockfile_info[nFile].AddBlock(nHeight, nTime);
if (fKnown) {
m_blockfile_info[nFile].nSize = std::max(pos.nPos + nAddSize, m_blockfile_info[nFile].nSize);
} else {
m_blockfile_info[nFile].nSize += nAddSize;
}
if (!fKnown) {
bool out_of_space;
size_t bytes_allocated = BlockFileSeq().Allocate(pos, nAddSize, out_of_space);
if (out_of_space) {
return AbortNode("Disk space is too low!", _("Disk space is too low!"));
}
if (bytes_allocated != 0 && fPruneMode) {
m_check_for_pruning = true;
}
}
m_dirty_fileinfo.insert(nFile);
return true;
}
bool BlockManager::FindUndoPos(BlockValidationState& state, int nFile, FlatFilePos& pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
pos.nPos = m_blockfile_info[nFile].nUndoSize;
m_blockfile_info[nFile].nUndoSize += nAddSize;
m_dirty_fileinfo.insert(nFile);
bool out_of_space;
size_t bytes_allocated = UndoFileSeq().Allocate(pos, nAddSize, out_of_space);
if (out_of_space) {
return AbortNode(state, "Disk space is too low!", _("Disk space is too low!"));
}
if (bytes_allocated != 0 && fPruneMode) {
m_check_for_pruning = true;
}
return true;
}
static bool WriteBlockToDisk(const CBlock& block, FlatFilePos& pos, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull()) {
return error("WriteBlockToDisk: OpenBlockFile failed");
}
// Write index header
unsigned int nSize = GetSerializeSize(block, fileout.GetVersion());
fileout << messageStart << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0) {
return error("WriteBlockToDisk: ftell failed");
}
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool BlockManager::WriteUndoDataForBlock(const CBlockUndo& blockundo, BlockValidationState& state, CBlockIndex* pindex, const CChainParams& chainparams)
{
// Write undo information to disk
if (pindex->GetUndoPos().IsNull()) {
FlatFilePos _pos;
if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, CLIENT_VERSION) + 40)) {
return error("ConnectBlock(): FindUndoPos failed");
}
if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart())) {
return AbortNode(state, "Failed to write undo data");
}
// rev files are written in block height order, whereas blk files are written as blocks come in (often out of order)
// we want to flush the rev (undo) file once we've written the last block, which is indicated by the last height
// in the block file info as below; note that this does not catch the case where the undo writes are keeping up
// with the block writes (usually when a synced up node is getting newly mined blocks) -- this case is caught in
// the FindBlockPos function
if (_pos.nFile < m_last_blockfile && static_cast<uint32_t>(pindex->nHeight) == m_blockfile_info[_pos.nFile].nHeightLast) {
FlushUndoFile(_pos.nFile, true);
}
// update nUndoPos in block index
pindex->nUndoPos = _pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
m_dirty_blockindex.insert(pindex);
}
return true;
}
bool ReadBlockFromDisk(CBlock& block, const FlatFilePos& pos, const Consensus::Params& consensusParams)
{
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) {
return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString());
}
// Read block
try {
filein >> block;
} catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams)) {
return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
}
// Signet only: check block solution
if (consensusParams.signet_blocks && !CheckSignetBlockSolution(block, consensusParams)) {
return error("ReadBlockFromDisk: Errors in block solution at %s", pos.ToString());
}
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams)
{
const FlatFilePos block_pos{WITH_LOCK(cs_main, return pindex->GetBlockPos())};
if (!ReadBlockFromDisk(block, block_pos, consensusParams)) {
return false;
}
if (block.GetHash() != pindex->GetBlockHash()) {
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s",
pindex->ToString(), block_pos.ToString());
}
return true;
}
bool ReadRawBlockFromDisk(std::vector<uint8_t>& block, const FlatFilePos& pos, const CMessageHeader::MessageStartChars& message_start)
{
FlatFilePos hpos = pos;
hpos.nPos -= 8; // Seek back 8 bytes for meta header
CAutoFile filein(OpenBlockFile(hpos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) {
return error("%s: OpenBlockFile failed for %s", __func__, pos.ToString());
}
try {
CMessageHeader::MessageStartChars blk_start;
unsigned int blk_size;
filein >> blk_start >> blk_size;
if (memcmp(blk_start, message_start, CMessageHeader::MESSAGE_START_SIZE)) {
return error("%s: Block magic mismatch for %s: %s versus expected %s", __func__, pos.ToString(),
HexStr(blk_start),
HexStr(message_start));
}
if (blk_size > MAX_SIZE) {
return error("%s: Block data is larger than maximum deserialization size for %s: %s versus %s", __func__, pos.ToString(),
blk_size, MAX_SIZE);
}
block.resize(blk_size); // Zeroing of memory is intentional here
filein.read((char*)block.data(), blk_size);
} catch (const std::exception& e) {
return error("%s: Read from block file failed: %s for %s", __func__, e.what(), pos.ToString());
}
return true;
}
bool ReadRawBlockFromDisk(std::vector<uint8_t>& block, const CBlockIndex* pindex, const CMessageHeader::MessageStartChars& message_start)
{
FlatFilePos block_pos;
{
LOCK(cs_main);
block_pos = pindex->GetBlockPos();
}
return ReadRawBlockFromDisk(block, block_pos, message_start);
}
/** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */
FlatFilePos BlockManager::SaveBlockToDisk(const CBlock& block, int nHeight, CChain& active_chain, const CChainParams& chainparams, const FlatFilePos* dbp)
{
unsigned int nBlockSize = ::GetSerializeSize(block, CLIENT_VERSION);
FlatFilePos blockPos;
if (dbp != nullptr) {
blockPos = *dbp;
}
if (!FindBlockPos(blockPos, nBlockSize + 8, nHeight, active_chain, block.GetBlockTime(), dbp != nullptr)) {
error("%s: FindBlockPos failed", __func__);
return FlatFilePos();
}
if (dbp == nullptr) {
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) {
AbortNode("Failed to write block");
return FlatFilePos();
}
}
return blockPos;
}
struct CImportingNow {
CImportingNow()
{
assert(fImporting == false);
fImporting = true;
}
~CImportingNow()
{
assert(fImporting == true);
fImporting = false;
}
};
void ThreadImport(ChainstateManager& chainman, std::vector<fs::path> vImportFiles, const ArgsManager& args)
{
SetSyscallSandboxPolicy(SyscallSandboxPolicy::INITIALIZATION_LOAD_BLOCKS);
ScheduleBatchPriority();
{
CImportingNow imp;
// -reindex
if (fReindex) {
int nFile = 0;
while (true) {
FlatFilePos pos(nFile, 0);
if (!fs::exists(GetBlockPosFilename(pos))) {
break; // No block files left to reindex
}
FILE* file = OpenBlockFile(pos, true);
if (!file) {
break; // This error is logged in OpenBlockFile
}
LogPrintf("Reindexing block file blk%05u.dat...\n", (unsigned int)nFile);
chainman.ActiveChainstate().LoadExternalBlockFile(file, &pos);
if (ShutdownRequested()) {
LogPrintf("Shutdown requested. Exit %s\n", __func__);
return;
}
nFile++;
}
WITH_LOCK(::cs_main, chainman.m_blockman.m_block_tree_db->WriteReindexing(false));
fReindex = false;
LogPrintf("Reindexing finished\n");
// To avoid ending up in a situation without genesis block, re-try initializing (no-op if reindexing worked):
chainman.ActiveChainstate().LoadGenesisBlock();
}
// -loadblock=
for (const fs::path& path : vImportFiles) {
FILE* file = fsbridge::fopen(path, "rb");
if (file) {
LogPrintf("Importing blocks file %s...\n", fs::PathToString(path));
chainman.ActiveChainstate().LoadExternalBlockFile(file);
if (ShutdownRequested()) {
LogPrintf("Shutdown requested. Exit %s\n", __func__);
return;
}
} else {
LogPrintf("Warning: Could not open blocks file %s\n", fs::PathToString(path));
}
}
// scan for better chains in the block chain database, that are not yet connected in the active best chain
// We can't hold cs_main during ActivateBestChain even though we're accessing
// the chainman unique_ptrs since ABC requires us not to be holding cs_main, so retrieve
// the relevant pointers before the ABC call.
for (CChainState* chainstate : WITH_LOCK(::cs_main, return chainman.GetAll())) {
BlockValidationState state;
if (!chainstate->ActivateBestChain(state, nullptr)) {
LogPrintf("Failed to connect best block (%s)\n", state.ToString());
StartShutdown();
return;
}
}
if (args.GetBoolArg("-stopafterblockimport", DEFAULT_STOPAFTERBLOCKIMPORT)) {
LogPrintf("Stopping after block import\n");
StartShutdown();
return;
}
} // End scope of CImportingNow
chainman.ActiveChainstate().LoadMempool(args);
}
} // namespace node