Files
bitcoin/src/bench/txgraph.cpp
2025-09-10 08:03:17 -04:00

127 lines
6.0 KiB
C++

// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <random.h>
#include <txgraph.h>
#include <util/feefrac.h>
#include <cassert>
#include <cstdint>
namespace {
void BenchTxGraphTrim(benchmark::Bench& bench)
{
// The from-block transactions consist of 1000 fully linear clusters, each with 64
// transactions. The mempool contains 11 transactions that together merge all of these into
// a single cluster.
//
// (1000 chains of 64 transactions, 64000 T's total)
//
// T T T T T T T T
// | | | | | | | |
// T T T T T T T T
// | | | | | | | |
// T T T T T T T T
// | | | | | | | |
// T T T T T T T T
// (64 long) (64 long) (64 long) (64 long) (64 long) (64 long) (64 long) (64 long)
// | | | | | | | |
// | | / \ | / \ | | /
// \----------+--------/ \--------+--------/ \--------+-----+----+--------/
// | | |
// B B B
//
// (11 B's, each attaching to up to 100 chains of 64 T's)
//
/** The maximum cluster count used in this test. */
static constexpr int MAX_CLUSTER_COUNT = 64;
/** The number of "top" (from-block) chains of transactions. */
static constexpr int NUM_TOP_CHAINS = 1000;
/** The number of transactions per top chain. */
static constexpr int NUM_TX_PER_TOP_CHAIN = MAX_CLUSTER_COUNT;
/** The (maximum) number of dependencies per bottom transaction. */
static constexpr int NUM_DEPS_PER_BOTTOM_TX = 100;
/** Set a very large cluster size limit so that only the count limit is triggered. */
static constexpr int32_t MAX_CLUSTER_SIZE = 100'000 * 100;
/** Set a very high number for acceptable iterations, so that we certainly benchmark optimal
* linearization. */
static constexpr uint64_t NUM_ACCEPTABLE_ITERS = 100'000'000;
/** Refs to all top transactions. */
std::vector<TxGraph::Ref> top_refs;
/** Refs to all bottom transactions. */
std::vector<TxGraph::Ref> bottom_refs;
/** Indexes into top_refs for some transaction of each component, in arbitrary order.
* Initially these are the last transactions in each chains, but as bottom transactions are
* added, entries will be removed when they get merged, and randomized. */
std::vector<size_t> top_components;
InsecureRandomContext rng(11);
auto graph = MakeTxGraph(MAX_CLUSTER_COUNT, MAX_CLUSTER_SIZE, NUM_ACCEPTABLE_ITERS);
// Construct the top chains.
for (int chain = 0; chain < NUM_TOP_CHAINS; ++chain) {
for (int chaintx = 0; chaintx < NUM_TX_PER_TOP_CHAIN; ++chaintx) {
int64_t fee = rng.randbits<27>() + 100;
FeePerWeight feerate{fee, 1};
top_refs.push_back(graph->AddTransaction(feerate));
// Add internal dependencies linking the chain transactions together.
if (chaintx > 0) {
graph->AddDependency(*(top_refs.rbegin()), *(top_refs.rbegin() + 1));
}
}
// Remember the last transaction in each chain, to attach the bottom transactions to.
top_components.push_back(top_refs.size() - 1);
}
// Make the graph linearize all clusters acceptably.
graph->GetBlockBuilder();
// Construct the bottom transactions, and dependencies to the top chains.
while (top_components.size() > 1) {
// Construct the transaction.
int64_t fee = rng.randbits<27>() + 100;
FeePerWeight feerate{fee, 1};
auto bottom_tx = graph->AddTransaction(feerate);
// Determine the number of dependencies this transaction will have.
int deps = std::min<int>(NUM_DEPS_PER_BOTTOM_TX, top_components.size());
for (int dep = 0; dep < deps; ++dep) {
// Pick an transaction in top_components to attach to.
auto idx = rng.randrange(top_components.size());
// Add dependency.
graph->AddDependency(/*parent=*/top_refs[top_components[idx]], /*child=*/bottom_tx);
// Unless this is the last dependency being added, remove from top_components, as
// the component will be merged with that one.
if (dep < deps - 1) {
// Move entry top the back.
if (idx != top_components.size() - 1) std::swap(top_components.back(), top_components[idx]);
// And pop it.
top_components.pop_back();
}
}
bottom_refs.push_back(std::move(bottom_tx));
}
// Run the benchmark exactly once. Running it multiple times would require the setup to be
// redone, which takes a very non-negligible time compared to the trimming itself.
bench.epochIterations(1).epochs(1).run([&] {
// Call Trim() to remove transactions and bring the cluster back within limits.
graph->Trim();
// And relinearize everything that remains acceptably.
graph->GetBlockBuilder();
});
assert(!graph->IsOversized(TxGraph::Level::TOP));
// At least 99% of chains must survive.
assert(graph->GetTransactionCount(TxGraph::Level::TOP) >= (NUM_TOP_CHAINS * NUM_TX_PER_TOP_CHAIN * 99) / 100);
}
} // namespace
static void TxGraphTrim(benchmark::Bench& bench) { BenchTxGraphTrim(bench); }
BENCHMARK(TxGraphTrim, benchmark::PriorityLevel::HIGH);