Wladimir J. van der Laan c2c4dbaebd
Merge #19988: Overhaul transaction request logic
fd9a0060f028a4c01bd88f58777dea34bdcbafd1 Report and verify expirations (Pieter Wuille)
86f50ed10f66b5535f0162cf0026456a9e3f8963 Delete limitedmap as it is unused now (Pieter Wuille)
cc16fff3e476a9378d2176b3c1b83ad12b1b052a Make txid delay penalty also apply to fetches of orphan's parents (Pieter Wuille)
173a1d2d3f824b83777ac713e89bee69fd87692d Expedite removal of tx requests that are no longer needed (Pieter Wuille)
de11b0a4eff20da3e3ca52dc90948b5253d329c5 Reduce MAX_PEER_TX_ANNOUNCEMENTS for non-PF_RELAY peers (Pieter Wuille)
242d16477df1a024c7126bad23dde39cad217eca Change transaction request logic to use txrequest (Pieter Wuille)
5b03121d60527a193a84c339151481f9c9c1962b Add txrequest fuzz tests (Pieter Wuille)
3c7fe0e5a0ee1abf4dc263ae5310e68253c866e1 Add txrequest unit tests (Pieter Wuille)
da3b8fde03f2e8060bb7ff3bff17175dab85f0cd Add txrequest module (Pieter Wuille)

Pull request description:

  This replaces the transaction request logic with an encapsulated class that maintains all the state surrounding it. By keeping it stand alone, it can be easily tested (using included unit tests and fuzz tests).

  The major changes are:

  * Announcements from outbound (and whitelisted) peers are now always preferred over those from inbound peers. This used to be the case for the first request (by delaying the first request from inbound peers), and a bias afters. The 2s delay for requests from inbound peers still exists, but after that, if viable outbound peers remain for any given transaction, they will always be tried first.
  * No more hard cap of 100 in flight transactions per peer, as there is less need for it (memory usage is linear in the number of announcements, but independent from the number in flight, and CPU usage isn't affected by it). Furthermore, if only one peer announces a transaction, and it has over 100 in flight already, we still want to request it from them. The cap is replaced with a rule that announcements from such overloaded peers get an additional 2s delay (possibly combined with the existing 2s delays for inbound connections, and for txid peers when wtxid peers are available).
  * The limit of 100000 tracked announcements is reduced to 5000; this was excessive. This can be bypassed using the PF_RELAY permission (to accommodate locally dumping a batch of many transactions).

  This replaces #19184, rebased on #18044 and with many small changes.

ACKs for top commit:
  ariard:
    Code Review ACK fd9a006. I've reviewed the new TxRequestTracker, its integration in net_processing, unit/functional/fuzzing test coverage. I looked more for soundness of new specification rather than functional consistency with old transaction request logic.
  MarcoFalke:
    Approach ACK fd9a0060f028a4c01bd88f58777dea34bdcbafd1 🏹
  naumenkogs:
    Code Review ACK fd9a006. I've reviewed everything, mostly to see how this stuff works at the lower level (less documentation-wise, more implementation-wise), and to try breaking it with unexpected sequences of events.
  jnewbery:
    utACK fd9a0060f028a4c01bd88f58777dea34bdcbafd1
  jonatack:
    WIP light ACK fd9a0060f028a4c01bd88f58777dea34bdcbafd1 have read the code, verified that each commit is hygienic, e.g. debug build clean and tests green, and have been running a node on and off with this branch and grepping the net debug log. Am still unpacking the discussion hidden by GitHub by fetching it via the API and connecting the dots, storing notes and suggestions in a local branch; at this point none are blockers.
  ryanofsky:
    Light code review ACK fd9a0060f028a4c01bd88f58777dea34bdcbafd1, looking at txrequest implementation, unit test implementation, and net_processing integration, just trying to understand how it works and looking for anything potentially confusing in the implementation. Didn't look at functional tests or catch up on review discussion. Just a sanity check review focused on:

Tree-SHA512: ea7b52710371498b59d9c9cfb5230dd544fe9c6cb699e69178dea641646104f38a0b5ec7f5f0dbf1eb579b7ec25a31ea420593eff3b7556433daf92d4b0f0dd7
2020-10-14 18:36:59 +02:00
..
2020-09-13 13:43:03 -04:00
2020-08-21 15:53:59 +01:00
2020-09-08 21:02:53 -04:00
2020-08-18 19:24:39 +09:00
2020-09-08 21:02:53 -04:00

Functional tests

Writing Functional Tests

Example test

The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test/functional/test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The Travis linter also checks this, but possibly not in all cases.
  • See the python lint script that checks for violations that could lead to bugs and issues in the test code.
  • Use type hints in your code to improve code readability and to detect possible bugs earlier.
  • Avoid wildcard imports
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramework, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.
  • Use '{}'.format(x) for string formatting, not '%s' % x.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • tool for tests for tools, eg tool_wallet.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • Use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Instead of inline comments or no test documentation at all, log the comments to the test log, e.g. self.log.info('Create enough transactions to fill a block'). Logs make the test code easier to read and the test logic easier to debug.
  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to control whether or not to use the cached data directories. The cached data directories contain a 200-block pre-mined blockchain and wallets for four nodes. Each node has 25 mature blocks (25x50=1250 BTC) in its wallet.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
  • Many of the core test framework classes such as CBlock and CTransaction don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • P2Ps can be used to test specific P2P protocol behavior. p2p.py contains test framework p2p objects and messages.py contains all the definitions for objects passed over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the bitcoind(s) being tested in a callback-based event loop; the other implements the test logic.

  • P2PConnection is the class used to connect to a bitcoind. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

P2PConnections can be used as such:

p2p_conn = node.add_p2p_connection(P2PInterface())
p2p_conn.send_and_ping(msg)

They can also be referenced by indexing into a TestNode's p2ps list, which contains the list of test framework p2p objects connected to itself (it does not include any TestNodes):

node.p2ps[0].sync_with_ping()

More examples can be found in p2p_unrequested_blocks.py, p2p_compactblocks.py.

Prototyping tests

The TestShell class exposes the BitcoinTestFramework functionality to interactive Python3 environments and can be used to prototype tests. This may be especially useful in a REPL environment with session logging utilities, such as IPython. The logs of such interactive sessions can later be adapted into permanent test cases.

Test framework modules

The following are useful modules for test developers. They are located in test/functional/test_framework/.

authproxy.py

Taken from the python-bitcoinrpc repository.

test_framework.py

Base class for functional tests.

util.py

Generally useful functions.

p2p.py

Test objects for interacting with a bitcoind node over the p2p interface.

script.py

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

key.py

Test-only secp256k1 elliptic curve implementation

blocktools.py

Helper functions for creating blocks and transactions.

Benchmarking with perf

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

There are two ways of invoking perf: one is to use the --perf flag when running tests, which will profile each node during the entire test run: perf begins to profile when the node starts and ends when it shuts down. The other way is the use the profile_with_perf context manager, e.g.

with node.profile_with_perf("send-big-msgs"):
    # Perform activity on the node you're interested in profiling, e.g.:
    for _ in range(10000):
        node.p2ps[0].send_message(some_large_message)

To see useful textual output, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

See also: