Files
bitcoin/test
merge-script c99f5c5e1b Merge bitcoin/bitcoin#33106: policy: lower the default blockmintxfee, incrementalrelayfee, minrelaytxfee
ba84a25dee [doc] update mempool-replacements.md for incremental relay feerate change (glozow)
18720bc5d5 [doc] release note for min feerate changes (glozow)
6da5de58ca [policy] lower default minrelaytxfee and incrementalrelayfee to 100sat/kvB (glozow)
2e515d2897 [prep/test] make wallet_fundrawtransaction's minrelaytxfee assumption explicit (glozow)
457cfb61b5 [prep/util] help MockMempoolMinFee handle more precise feerates (glozow)
3eab8b7240 [prep/test] replace magic number 1000 with respective feerate vars (glozow)
5f2df0ef78 [miner] lower default -blockmintxfee to 1sat/kvB (glozow)
d6213d6aa1 [doc] assert that default min relay feerate and incremental are the same (glozow)
1fbee5d7b6 [test] explicitly check default -minrelaytxfee and -incrementalrelayfee (glozow)
72dc18467d [test] RBF rule 4 for various incrementalrelayfee settings (glozow)
85f498893f [test] check bypass of minrelay for various minrelaytxfee settings (glozow)
e5f896bb1f [test] check miner doesn't select 0fee transactions (glozow)

Pull request description:

  ML post for discussion about the general concept, how this impacts the wider ecosystem, philosophy about minimum feerates, etc: https://delvingbitcoin.org/t/changing-the-minimum-relay-feerate/1886

  This PR is inspired by #13922 and #32959 to lower the minimum relay feerate in response to bitcoin's exchange rate changes in the last ~10 years. It lowers the default `-minrelaytxfee` and `-incrementalrelayfee`, and knocks `-blockmintxfee` down to the minimum nonzero setting. Also adds some tests for the settings and pulls in #32750.

  The minimum relay feerate is a DoS protection rule, representing a price on the network bandwidth used to relay transactions that have no PoW. While relay nodes don't all collect fees, the assumption is that if nodes on the network use their resources to relay this transaction, it will reach a miner and the attacker's money will be spent once it is mined. The incremental relay feerate is similar: it's used to price the relay of replacement transactions (the additional fees need to cover the new transactions at this feerate) and evicted transactions (following a trim, the new mempool minimum feerate is the package feerate of what was removed + incremental).

  Also note that many nodes on the network have elected to relay/mine lower feerate transactions. Miners (some say up to 85%) are choosing to mine these low feerate transactions instead of leaving block space unfilled, but these blocks have extremely poor compact block reconstruction rates with nodes that rejected or didn't hear about those transactions earlier.
  - https://github.com/bitcoin/bitcoin/pull/33106#issuecomment-3155627414
  - https://x.com/caesrcd/status/1947022514267230302
  - https://mempool.space/block/00000000000000000001305770e0aa279dcd8ba8be18c3d5cf736a26f77e06fd
  - https://mempool.space/block/00000000000000000001b491649ec030aa8e003e1f4f9d3b24bb99ba16f91e97
  - https://x.com/mononautical/status/1949452586391855121

  While it wouldn't make sense to loosen DoS restrictions recklessly in response to these events, I think the current price is higher than necessary, and this motivates us changing the default soon. Since the minimum relay feerate defines an amount as too small based on what it costs the attacker, it makes sense to consider BTC's conversion rate to what resources you can buy in the "real world."

  Going off of [this comment](https://github.com/bitcoin/bitcoin/pull/32959#issuecomment-3095260286) and [this comment](https://github.com/bitcoin/bitcoin/pull/33106#issuecomment-3142444090)
  - Let's say an attacker wants to use/exhaust the network's bandwidth, and has the choice between renting resources from a commercial provider and getting the network to "spam" itself it by sending unconfirmed transactions. We'd like the latter to be more expensive than the former.
  - The bandwidth for relaying a transaction across the network is roughly its serialized size (plus relay overhead) x number of nodes. A 1000vB transaction is 1000-4000B serialized. With 100k nodes, that's 0.1-0.4GB
  - If the going rate for ec2 bandwidth is 10c/GB, that's like 1-4c per kvB of transaction data
  - Then a 1000vB transaction should pay at least 4c
  - $0.04 USD is 40 satoshis at 100k USD/BTC
  - Baking in some margin for changes in USD/BTC conversion rate, number of nodes (and thus bandwidth), and commercial service costs, I think 50-100 satoshis is on the conservative end but in the right ballpark
  - At least 97% of the recent sub-1sat/vB transactions would be accepted with a new threshold of 0.1sat/vB: https://github.com/bitcoin/bitcoin/pull/33106#issuecomment-3156213089

  List of feerates that are changed and why:
  - min relay feerate: significant conversion rate changes, see above
  - incremental relay feerate: should follow min relay feerate, see above
  - block minimum feerate: shouldn’t be above min relay feerate, otherwise the node accepts transactions it will never mine. I've knocked it down to the bare minimum of 1sat/kvB. Now that we no longer have coin age priority (removed in v0.15), I think we can leave it to the `CheckFeeRate` policy rule to enforce a minimum entry price, and the block assembly code should just fill up the block with whatever it finds in mempool.

  List of feerates that are not changed and why:
  - dust feerate: this feerate cannot be changed as flexibly as the minrelay feerate. A much longer record of low feerate transactions being mined is needed to motivate a decrease there.
  - maxfeerate (RPC, wallet): I think the conversion rate is relevant as well, but out of scope for this PR
  - minimum feerate returned by fee estimator: should be done later. In the past, we've excluded new policy defaults from fee estimation until we feel confident they represent miner policy (e.g. #9519). Also, the fee estimator itself doesn't have support for sub-1sat/vB yet.
  - all wallet feerates (mintxfee, fallbackfee, discardfee, consolidatefeerate, WALLET_INCREMENTAL_RELAY_FEE, etc.): should be done later. Our standard procedure is to do wallet changes at least 1 release after policy changes.

ACKs for top commit:
  achow101:
    ACK ba84a25dee
  gmaxwell:
    ACK ba84a25dee
  jsarenik:
    Tested ACK ba84a25dee
  darosior:
    ACK ba84a25dee
  ajtowns:
    ACK ba84a25dee
  davidgumberg:
    crACK  ba84a25dee
  w0xlt:
    ACK ba84a25dee
  caesrcd:
    reACK ba84a25dee
  ismaelsadeeq:
    re-ACK ba84a25dee

Tree-SHA512: b4c35e8b506b1184db466551a7e2e48bb1e535972a8dbcaa145ce3a8bfdcc70a8807dc129460f129a9d31024174d34077154a387c32f1a3e6831f6fa5e9c399e
2025-08-15 10:39:16 +01:00
..

This directory contains integration tests that test bitcoind and its utilities in their entirety. It does not contain unit tests, which can be found in /src/test, /src/wallet/test, etc.

This directory contains the following sets of tests:

  • fuzz A runner to execute all fuzz targets from /src/test/fuzz.
  • functional which test the functionality of bitcoind and bitcoin-qt by interacting with them through the RPC and P2P interfaces.
  • lint which perform various static analysis checks.

The fuzz tests, functional tests and lint scripts can be run as explained in the sections below.

Running tests locally

Before tests can be run locally, Bitcoin Core must be built. See the building instructions for help.

The following examples assume that the build directory is named build.

Fuzz tests

See /doc/fuzzing.md

Functional tests

Dependencies and prerequisites

The ZMQ functional test requires a python ZMQ library. To install it:

  • on Unix, run sudo apt-get install python3-zmq
  • on mac OS, run pip3 install pyzmq

On Windows the PYTHONUTF8 environment variable must be set to 1:

set PYTHONUTF8=1

Running the tests

Individual tests can be run by directly calling the test script, e.g.:

build/test/functional/feature_rbf.py

or can be run through the test_runner harness, eg:

build/test/functional/test_runner.py feature_rbf.py

You can run any combination (incl. duplicates) of tests by calling:

build/test/functional/test_runner.py <testname1> <testname2> <testname3> ...

Wildcard test names can be passed, if the paths are coherent and the test runner is called from a bash shell or similar that does the globbing. For example, to run all the wallet tests:

build/test/functional/test_runner.py test/functional/wallet*
functional/test_runner.py functional/wallet*  # (called from the build/test/ directory)
test_runner.py wallet*  # (called from the build/test/functional/ directory)

but not

build/test/functional/test_runner.py wallet*

Combinations of wildcards can be passed:

build/test/functional/test_runner.py ./test/functional/tool* test/functional/mempool*
test_runner.py tool* mempool*

Run the regression test suite with:

build/test/functional/test_runner.py

Run all possible tests with

build/test/functional/test_runner.py --extended

In order to run backwards compatibility tests, first run:

test/get_previous_releases.py

to download the necessary previous release binaries.

By default, up to 4 tests will be run in parallel by test_runner. To specify how many jobs to run, append --jobs=n

The individual tests and the test_runner harness have many command-line options. Run build/test/functional/test_runner.py -h to see them all.

Speed up test runs with a RAM disk

If you have available RAM on your system you can create a RAM disk to use as the cache and tmp directories for the functional tests in order to speed them up. Speed-up amount varies on each system (and according to your RAM speed and other variables), but a 2-3x speed-up is not uncommon.

Linux

To create a 4 GiB RAM disk at /mnt/tmp/:

sudo mkdir -p /mnt/tmp
sudo mount -t tmpfs -o size=4g tmpfs /mnt/tmp/

Configure the size of the RAM disk using the size= option. The size of the RAM disk needed is relative to the number of concurrent jobs the test suite runs. For example running the test suite with --jobs=100 might need a 4 GiB RAM disk, but running with --jobs=32 will only need a 2.5 GiB RAM disk.

To use, run the test suite specifying the RAM disk as the cachedir and tmpdir:

build/test/functional/test_runner.py --cachedir=/mnt/tmp/cache --tmpdir=/mnt/tmp

Once finished with the tests and the disk, and to free the RAM, simply unmount the disk:

sudo umount /mnt/tmp

macOS

To create a 4 GiB RAM disk named "ramdisk" at /Volumes/ramdisk/:

diskutil erasevolume HFS+ ramdisk $(hdiutil attach -nomount ram://8388608)

Configure the RAM disk size, expressed as the number of blocks, at the end of the command (4096 MiB * 2048 blocks/MiB = 8388608 blocks for 4 GiB). To run the tests using the RAM disk:

build/test/functional/test_runner.py --cachedir=/Volumes/ramdisk/cache --tmpdir=/Volumes/ramdisk/tmp

To unmount:

umount /Volumes/ramdisk

Troubleshooting and debugging test failures

Resource contention

The P2P and RPC ports used by the bitcoind nodes-under-test are chosen to make conflicts with other processes unlikely. However, if there is another bitcoind process running on the system (perhaps from a previous test which hasn't successfully killed all its bitcoind nodes), then there may be a port conflict which will cause the test to fail. It is recommended that you run the tests on a system where no other bitcoind processes are running.

On linux, the test framework will warn if there is another bitcoind process running when the tests are started.

If there are zombie bitcoind processes after test failure, you can kill them by running the following commands. Note that these commands will kill all bitcoind processes running on the system, so should not be used if any non-test bitcoind processes are being run.

killall bitcoind

or

pkill -9 bitcoind
Data directory cache

A pre-mined blockchain with 200 blocks is generated the first time a functional test is run and is stored in build/test/cache. This speeds up test startup times since new blockchains don't need to be generated for each test. However, the cache may get into a bad state, in which case tests will fail. If this happens, remove the cache directory (and make sure bitcoind processes are stopped as above):

rm -rf build/test/cache
killall bitcoind
Test logging

The tests contain logging at five different levels (DEBUG, INFO, WARNING, ERROR and CRITICAL). From within your functional tests you can log to these different levels using the logger included in the test_framework, e.g. self.log.debug(object). By default:

  • when run through the test_runner harness, all logs are written to test_framework.log and no logs are output to the console.
  • when run directly, all logs are written to test_framework.log and INFO level and above are output to the console.
  • when run by our CI (Continuous Integration), no logs are output to the console. However, if a test fails, the test_framework.log and bitcoind debug.logs will all be dumped to the console to help troubleshooting.

These log files can be located under the test data directory (which is always printed in the first line of test output):

  • <test data directory>/test_framework.log
  • <test data directory>/node<node number>/regtest/debug.log.

The node number identifies the relevant test node, starting from node0, which corresponds to its position in the nodes list of the specific test, e.g. self.nodes[0].

To change the level of logs output to the console, use the -l command line argument.

test_framework.log and bitcoind debug.logs can be combined into a single aggregate log by running the combine_logs.py script. The output can be plain text, colorized text or html. For example:

build/test/functional/combine_logs.py -c <test data directory> | less -r

will pipe the colorized logs from the test into less.

Use --tracerpc to trace out all the RPC calls and responses to the console. For some tests (eg any that use submitblock to submit a full block over RPC), this can result in a lot of screen output.

By default, the test data directory will be deleted after a successful run. Use --nocleanup to leave the test data directory intact. The test data directory is never deleted after a failed test.

Attaching a debugger

A python debugger can be attached to tests at any point. Just add the line:

import pdb; pdb.set_trace()

anywhere in the test. You will then be able to inspect variables, as well as call methods that interact with the bitcoind nodes-under-test.

If further introspection of the bitcoind instances themselves becomes necessary, this can be accomplished by first setting a pdb breakpoint at an appropriate location, running the test to that point, then using gdb (or lldb on macOS) to attach to the process and debug.

For instance, to attach to self.node[1] during a run you can get the pid of the node within pdb.

(pdb) self.node[1].process.pid

Alternatively, you can find the pid by inspecting the temp folder for the specific test you are running. The path to that folder is printed at the beginning of every test run:

2017-06-27 14:13:56.686000 TestFramework (INFO): Initializing test directory /tmp/user/1000/testo9vsdjo3

Use the path to find the pid file in the temp folder:

cat /tmp/user/1000/testo9vsdjo3/node1/regtest/bitcoind.pid

Then you can use the pid to start gdb:

gdb /home/example/bitcoind <pid>

Note: gdb attach step may require ptrace_scope to be modified, or sudo preceding the gdb. See this link for considerations: https://www.kernel.org/doc/Documentation/security/Yama.txt

Often while debugging RPC calls in functional tests, the test might time out before the process can return a response. Use --timeout-factor 0 to disable all RPC timeouts for that particular functional test. Ex: build/test/functional/wallet_hd.py --timeout-factor 0.

Profiling

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

To generate a profile during test suite runs, use the --perf flag.

To see render the output to text, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

For ways to generate more granular profiles, see the README in test/functional.

Lint tests

See the README in test/lint.

Writing functional tests

You are encouraged to write functional tests for new or existing features. Further information about the functional test framework and individual tests is found in test/functional.