Files
bitcoin/src/node/miner.cpp
Suhas Daftuar 2d88966e43 miner: replace "package" with "chunk"
This makes the terminology consistent with other parts of the codebase, as part
of the cluster mempool implementation.
2025-11-30 13:50:04 -05:00

444 lines
18 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/miner.h>
#include <chain.h>
#include <chainparams.h>
#include <coins.h>
#include <common/args.h>
#include <consensus/amount.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <deploymentstatus.h>
#include <logging.h>
#include <node/context.h>
#include <node/kernel_notifications.h>
#include <policy/feerate.h>
#include <policy/policy.h>
#include <pow.h>
#include <primitives/transaction.h>
#include <util/moneystr.h>
#include <util/signalinterrupt.h>
#include <util/time.h>
#include <validation.h>
#include <algorithm>
#include <utility>
#include <numeric>
namespace node {
int64_t GetMinimumTime(const CBlockIndex* pindexPrev, const int64_t difficulty_adjustment_interval)
{
int64_t min_time{pindexPrev->GetMedianTimePast() + 1};
// Height of block to be mined.
const int height{pindexPrev->nHeight + 1};
// Account for BIP94 timewarp rule on all networks. This makes future
// activation safer.
if (height % difficulty_adjustment_interval == 0) {
min_time = std::max<int64_t>(min_time, pindexPrev->GetBlockTime() - MAX_TIMEWARP);
}
return min_time;
}
int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
int64_t nOldTime = pblock->nTime;
int64_t nNewTime{std::max<int64_t>(GetMinimumTime(pindexPrev, consensusParams.DifficultyAdjustmentInterval()),
TicksSinceEpoch<std::chrono::seconds>(NodeClock::now()))};
if (nOldTime < nNewTime) {
pblock->nTime = nNewTime;
}
// Updating time can change work required on testnet:
if (consensusParams.fPowAllowMinDifficultyBlocks) {
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams);
}
return nNewTime - nOldTime;
}
void RegenerateCommitments(CBlock& block, ChainstateManager& chainman)
{
CMutableTransaction tx{*block.vtx.at(0)};
tx.vout.erase(tx.vout.begin() + GetWitnessCommitmentIndex(block));
block.vtx.at(0) = MakeTransactionRef(tx);
const CBlockIndex* prev_block = WITH_LOCK(::cs_main, return chainman.m_blockman.LookupBlockIndex(block.hashPrevBlock));
chainman.GenerateCoinbaseCommitment(block, prev_block);
block.hashMerkleRoot = BlockMerkleRoot(block);
}
static BlockAssembler::Options ClampOptions(BlockAssembler::Options options)
{
options.block_reserved_weight = std::clamp<size_t>(options.block_reserved_weight, MINIMUM_BLOCK_RESERVED_WEIGHT, MAX_BLOCK_WEIGHT);
options.coinbase_output_max_additional_sigops = std::clamp<size_t>(options.coinbase_output_max_additional_sigops, 0, MAX_BLOCK_SIGOPS_COST);
// Limit weight to between block_reserved_weight and MAX_BLOCK_WEIGHT for sanity:
// block_reserved_weight can safely exceed -blockmaxweight, but the rest of the block template will be empty.
options.nBlockMaxWeight = std::clamp<size_t>(options.nBlockMaxWeight, options.block_reserved_weight, MAX_BLOCK_WEIGHT);
return options;
}
BlockAssembler::BlockAssembler(Chainstate& chainstate, const CTxMemPool* mempool, const Options& options)
: chainparams{chainstate.m_chainman.GetParams()},
m_mempool{options.use_mempool ? mempool : nullptr},
m_chainstate{chainstate},
m_options{ClampOptions(options)}
{
}
void ApplyArgsManOptions(const ArgsManager& args, BlockAssembler::Options& options)
{
// Block resource limits
options.nBlockMaxWeight = args.GetIntArg("-blockmaxweight", options.nBlockMaxWeight);
if (const auto blockmintxfee{args.GetArg("-blockmintxfee")}) {
if (const auto parsed{ParseMoney(*blockmintxfee)}) options.blockMinFeeRate = CFeeRate{*parsed};
}
options.print_modified_fee = args.GetBoolArg("-printpriority", options.print_modified_fee);
options.block_reserved_weight = args.GetIntArg("-blockreservedweight", options.block_reserved_weight);
}
void BlockAssembler::resetBlock()
{
// Reserve space for fixed-size block header, txs count, and coinbase tx.
nBlockWeight = m_options.block_reserved_weight;
nBlockSigOpsCost = m_options.coinbase_output_max_additional_sigops;
// These counters do not include coinbase tx
nBlockTx = 0;
nFees = 0;
}
std::unique_ptr<CBlockTemplate> BlockAssembler::CreateNewBlock()
{
const auto time_start{SteadyClock::now()};
resetBlock();
pblocktemplate.reset(new CBlockTemplate());
CBlock* const pblock = &pblocktemplate->block; // pointer for convenience
// Add dummy coinbase tx as first transaction. It is skipped by the
// getblocktemplate RPC and mining interface consumers must not use it.
pblock->vtx.emplace_back();
LOCK(::cs_main);
CBlockIndex* pindexPrev = m_chainstate.m_chain.Tip();
assert(pindexPrev != nullptr);
nHeight = pindexPrev->nHeight + 1;
pblock->nVersion = m_chainstate.m_chainman.m_versionbitscache.ComputeBlockVersion(pindexPrev, chainparams.GetConsensus());
// -regtest only: allow overriding block.nVersion with
// -blockversion=N to test forking scenarios
if (chainparams.MineBlocksOnDemand()) {
pblock->nVersion = gArgs.GetIntArg("-blockversion", pblock->nVersion);
}
pblock->nTime = TicksSinceEpoch<std::chrono::seconds>(NodeClock::now());
m_lock_time_cutoff = pindexPrev->GetMedianTimePast();
if (m_mempool) {
LOCK(m_mempool->cs);
m_mempool->StartBlockBuilding();
addChunks();
m_mempool->StopBlockBuilding();
}
const auto time_1{SteadyClock::now()};
m_last_block_num_txs = nBlockTx;
m_last_block_weight = nBlockWeight;
// Create coinbase transaction.
CMutableTransaction coinbaseTx;
coinbaseTx.vin.resize(1);
coinbaseTx.vin[0].prevout.SetNull();
coinbaseTx.vin[0].nSequence = CTxIn::MAX_SEQUENCE_NONFINAL; // Make sure timelock is enforced.
coinbaseTx.vout.resize(1);
coinbaseTx.vout[0].scriptPubKey = m_options.coinbase_output_script;
coinbaseTx.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus());
coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0;
Assert(nHeight > 0);
coinbaseTx.nLockTime = static_cast<uint32_t>(nHeight - 1);
pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx));
pblocktemplate->vchCoinbaseCommitment = m_chainstate.m_chainman.GenerateCoinbaseCommitment(*pblock, pindexPrev);
LogPrintf("CreateNewBlock(): block weight: %u txs: %u fees: %ld sigops %d\n", GetBlockWeight(*pblock), nBlockTx, nFees, nBlockSigOpsCost);
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus());
pblock->nNonce = 0;
if (m_options.test_block_validity) {
if (BlockValidationState state{TestBlockValidity(m_chainstate, *pblock, /*check_pow=*/false, /*check_merkle_root=*/false)}; !state.IsValid()) {
throw std::runtime_error(strprintf("TestBlockValidity failed: %s", state.ToString()));
}
}
const auto time_2{SteadyClock::now()};
LogDebug(BCLog::BENCH, "CreateNewBlock() chunks: %.2fms, validity: %.2fms (total %.2fms)\n",
Ticks<MillisecondsDouble>(time_1 - time_start),
Ticks<MillisecondsDouble>(time_2 - time_1),
Ticks<MillisecondsDouble>(time_2 - time_start));
return std::move(pblocktemplate);
}
bool BlockAssembler::TestChunkBlockLimits(FeePerWeight chunk_feerate, int64_t chunk_sigops_cost) const
{
if (nBlockWeight + chunk_feerate.size >= m_options.nBlockMaxWeight) {
return false;
}
if (nBlockSigOpsCost + chunk_sigops_cost >= MAX_BLOCK_SIGOPS_COST) {
return false;
}
return true;
}
// Perform transaction-level checks before adding to block:
// - transaction finality (locktime)
bool BlockAssembler::TestChunkTransactions(const std::vector<CTxMemPoolEntryRef>& txs) const
{
for (const auto tx : txs) {
if (!IsFinalTx(tx.get().GetTx(), nHeight, m_lock_time_cutoff)) {
return false;
}
}
return true;
}
void BlockAssembler::AddToBlock(const CTxMemPoolEntry& entry)
{
pblocktemplate->block.vtx.emplace_back(entry.GetSharedTx());
pblocktemplate->vTxFees.push_back(entry.GetFee());
pblocktemplate->vTxSigOpsCost.push_back(entry.GetSigOpCost());
nBlockWeight += entry.GetTxWeight();
++nBlockTx;
nBlockSigOpsCost += entry.GetSigOpCost();
nFees += entry.GetFee();
if (m_options.print_modified_fee) {
LogPrintf("fee rate %s txid %s\n",
CFeeRate(entry.GetModifiedFee(), entry.GetTxSize()).ToString(),
entry.GetTx().GetHash().ToString());
}
}
void BlockAssembler::addChunks()
{
// Limit the number of attempts to add transactions to the block when it is
// close to full; this is just a simple heuristic to finish quickly if the
// mempool has a lot of entries.
const int64_t MAX_CONSECUTIVE_FAILURES = 1000;
constexpr int32_t BLOCK_FULL_ENOUGH_WEIGHT_DELTA = 4000;
int64_t nConsecutiveFailed = 0;
std::vector<CTxMemPoolEntry::CTxMemPoolEntryRef> selected_transactions;
selected_transactions.reserve(MAX_CLUSTER_COUNT_LIMIT);
FeePerWeight chunk_feerate;
// This fills selected_transactions
chunk_feerate = m_mempool->GetBlockBuilderChunk(selected_transactions);
FeePerVSize chunk_feerate_vsize = ToFeePerVSize(chunk_feerate);
while (selected_transactions.size() > 0) {
// Check to see if min fee rate is still respected.
if (chunk_feerate_vsize << m_options.blockMinFeeRate.GetFeePerVSize()) {
// Everything else we might consider has a lower feerate
return;
}
int64_t chunk_sig_ops = 0;
for (const auto& tx : selected_transactions) {
chunk_sig_ops += tx.get().GetSigOpCost();
}
// Check to see if this chunk will fit.
if (!TestChunkBlockLimits(chunk_feerate, chunk_sig_ops) || !TestChunkTransactions(selected_transactions)) {
// This chunk won't fit, so we skip it and will try the next best one.
m_mempool->SkipBuilderChunk();
++nConsecutiveFailed;
if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockWeight +
BLOCK_FULL_ENOUGH_WEIGHT_DELTA > m_options.nBlockMaxWeight) {
// Give up if we're close to full and haven't succeeded in a while
return;
}
} else {
m_mempool->IncludeBuilderChunk();
// This chunk will fit, so add it to the block.
nConsecutiveFailed = 0;
for (const auto& tx : selected_transactions) {
AddToBlock(tx);
}
pblocktemplate->m_package_feerates.emplace_back(chunk_feerate_vsize);
}
selected_transactions.clear();
chunk_feerate = m_mempool->GetBlockBuilderChunk(selected_transactions);
chunk_feerate_vsize = ToFeePerVSize(chunk_feerate);
}
}
void AddMerkleRootAndCoinbase(CBlock& block, CTransactionRef coinbase, uint32_t version, uint32_t timestamp, uint32_t nonce)
{
if (block.vtx.size() == 0) {
block.vtx.emplace_back(coinbase);
} else {
block.vtx[0] = coinbase;
}
block.nVersion = version;
block.nTime = timestamp;
block.nNonce = nonce;
block.hashMerkleRoot = BlockMerkleRoot(block);
// Reset cached checks
block.m_checked_witness_commitment = false;
block.m_checked_merkle_root = false;
block.fChecked = false;
}
void InterruptWait(KernelNotifications& kernel_notifications, bool& interrupt_wait)
{
LOCK(kernel_notifications.m_tip_block_mutex);
interrupt_wait = true;
kernel_notifications.m_tip_block_cv.notify_all();
}
std::unique_ptr<CBlockTemplate> WaitAndCreateNewBlock(ChainstateManager& chainman,
KernelNotifications& kernel_notifications,
CTxMemPool* mempool,
const std::unique_ptr<CBlockTemplate>& block_template,
const BlockWaitOptions& options,
const BlockAssembler::Options& assemble_options,
bool& interrupt_wait)
{
// Delay calculating the current template fees, just in case a new block
// comes in before the next tick.
CAmount current_fees = -1;
// Alternate waiting for a new tip and checking if fees have risen.
// The latter check is expensive so we only run it once per second.
auto now{NodeClock::now()};
const auto deadline = now + options.timeout;
const MillisecondsDouble tick{1000};
const bool allow_min_difficulty{chainman.GetParams().GetConsensus().fPowAllowMinDifficultyBlocks};
do {
bool tip_changed{false};
{
WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock);
// Note that wait_until() checks the predicate before waiting
kernel_notifications.m_tip_block_cv.wait_until(lock, std::min(now + tick, deadline), [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
AssertLockHeld(kernel_notifications.m_tip_block_mutex);
const auto tip_block{kernel_notifications.TipBlock()};
// We assume tip_block is set, because this is an instance
// method on BlockTemplate and no template could have been
// generated before a tip exists.
tip_changed = Assume(tip_block) && tip_block != block_template->block.hashPrevBlock;
return tip_changed || chainman.m_interrupt || interrupt_wait;
});
if (interrupt_wait) {
interrupt_wait = false;
return nullptr;
}
}
if (chainman.m_interrupt) return nullptr;
// At this point the tip changed, a full tick went by or we reached
// the deadline.
// Must release m_tip_block_mutex before locking cs_main, to avoid deadlocks.
LOCK(::cs_main);
// On test networks return a minimum difficulty block after 20 minutes
if (!tip_changed && allow_min_difficulty) {
const NodeClock::time_point tip_time{std::chrono::seconds{chainman.ActiveChain().Tip()->GetBlockTime()}};
if (now > tip_time + 20min) {
tip_changed = true;
}
}
/**
* We determine if fees increased compared to the previous template by generating
* a fresh template. There may be more efficient ways to determine how much
* (approximate) fees for the next block increased, perhaps more so after
* Cluster Mempool.
*
* We'll also create a new template if the tip changed during this iteration.
*/
if (options.fee_threshold < MAX_MONEY || tip_changed) {
auto new_tmpl{BlockAssembler{
chainman.ActiveChainstate(),
mempool,
assemble_options}
.CreateNewBlock()};
// If the tip changed, return the new template regardless of its fees.
if (tip_changed) return new_tmpl;
// Calculate the original template total fees if we haven't already
if (current_fees == -1) {
current_fees = std::accumulate(block_template->vTxFees.begin(), block_template->vTxFees.end(), CAmount{0});
}
// Check if fees increased enough to return the new template
const CAmount new_fees = std::accumulate(new_tmpl->vTxFees.begin(), new_tmpl->vTxFees.end(), CAmount{0});
Assume(options.fee_threshold != MAX_MONEY);
if (new_fees >= current_fees + options.fee_threshold) return new_tmpl;
}
now = NodeClock::now();
} while (now < deadline);
return nullptr;
}
std::optional<BlockRef> GetTip(ChainstateManager& chainman)
{
LOCK(::cs_main);
CBlockIndex* tip{chainman.ActiveChain().Tip()};
if (!tip) return {};
return BlockRef{tip->GetBlockHash(), tip->nHeight};
}
std::optional<BlockRef> WaitTipChanged(ChainstateManager& chainman, KernelNotifications& kernel_notifications, const uint256& current_tip, MillisecondsDouble& timeout)
{
Assume(timeout >= 0ms); // No internal callers should use a negative timeout
if (timeout < 0ms) timeout = 0ms;
if (timeout > std::chrono::years{100}) timeout = std::chrono::years{100}; // Upper bound to avoid UB in std::chrono
auto deadline{std::chrono::steady_clock::now() + timeout};
{
WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock);
// For callers convenience, wait longer than the provided timeout
// during startup for the tip to be non-null. That way this function
// always returns valid tip information when possible and only
// returns null when shutting down, not when timing out.
kernel_notifications.m_tip_block_cv.wait(lock, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
return kernel_notifications.TipBlock() || chainman.m_interrupt;
});
if (chainman.m_interrupt) return {};
// At this point TipBlock is set, so continue to wait until it is
// different then `current_tip` provided by caller.
kernel_notifications.m_tip_block_cv.wait_until(lock, deadline, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
return Assume(kernel_notifications.TipBlock()) != current_tip || chainman.m_interrupt;
});
}
if (chainman.m_interrupt) return {};
// Must release m_tip_block_mutex before getTip() locks cs_main, to
// avoid deadlocks.
return GetTip(chainman);
}
} // namespace node