4101ec9d2e05a35c35f587a28f1feee6cebcc61b doc: mention that we enforce port=0 in I2P (Vasil Dimov) e0a2b390c144e123e2fc8a289fdff36815476964 addrman: reset I2P ports to 0 when loading from disk (Vasil Dimov) 41cda9d075ebcab1dbb950160ebe9d0ba7b5745e test: ensure I2P ports are handled as expected (Vasil Dimov) 4f432bd738c420512a86a51ab3e00323f396b89e net: do not connect to I2P hosts on port!=0 (Vasil Dimov) 1f096f091ebd88efb18154b8894a38122c39624f net: distinguish default port per network (Vasil Dimov) aeac3bce3ead1f24ca782079ef0defa86fd8cb98 net: change I2P seeds' ports to 0 (Vasil Dimov) 38f900290cc3a839e99bef13474d35e1c02e6b0d net: change assumed I2P port to 0 (Vasil Dimov) Pull request description: _This is an alternative to https://github.com/bitcoin/bitcoin/pull/21514, inspired by https://github.com/bitcoin/bitcoin/pull/21514#issuecomment-815049933. They are mutually exclusive. Just one of them should be merged._ Change assumed ports for I2P to 0 (instead of the default 8333) as this is closer to what actually happens underneath with SAM 3.1 (https://github.com/bitcoin/bitcoin/pull/21514#issuecomment-812632520, https://github.com/bitcoin/bitcoin/pull/21514#issuecomment-816564719). Don't connect to I2P peers with advertised port != 0 (we don't specify a port to our SAM 3.1 proxy and it always connects to port = 0). Note, this change: * Keeps I2P addresses with port != 0 in addrman and relays them to others via P2P gossip. There may be non-bitcoin-core-22.0 peers using SAM 3.2 and for them such addresses may be useful. * Silently refuses to connect to I2P hosts with port != 0. This is ok for automatically chosen peers from addrman. Not so ok for peers provided via `-addnode` or `-connect` - a user who specifies `foo.b32.i2p:1234` (non zero port) may wonder why "nothing is happening". Fixes #21389 ACKs for top commit: laanwj: Code review ACK 4101ec9d2e05a35c35f587a28f1feee6cebcc61b jonatack: re-ACK 4101ec9d2e05a35c35f587a28f1feee6cebcc61b per `git range-diff efff9c3 0b0ee03 4101ec9`, built with DDEBUG_ADDRMAN, did fairly extensive testing on mainnet both with and without a peers.dat / -dnsseeds=0 to test boostrapping. Tree-SHA512: 0e3c019e1dc05e54f559275859d3450e0c735596d179e30b66811aad9d5b5fabe3dcc44571e8f7b99f9fe16453eee393d6e153454dd873b9ff14907d4e6354fe
Functional tests
Writing Functional Tests
Example test
The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.
Coverage
Running test/functional/test_runner.py
with the --coverage
argument tracks which RPCs are
called by the tests and prints a report of uncovered RPCs in the summary. This
can be used (along with the --extended
argument) to find out which RPCs we
don't have test cases for.
Style guidelines
- Where possible, try to adhere to PEP-8 guidelines
- Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
- The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The CI linter job also checks this, but possibly not in all cases.
- See the python lint script that checks for violations that could lead to bugs and issues in the test code.
- Use type hints in your code to improve code readability and to detect possible bugs earlier.
- Avoid wildcard imports
- Use a module-level docstring to describe what the test is testing, and how it is testing it.
- When subclassing the BitcoinTestFramework, place overrides for the
set_test_params()
,add_options()
andsetup_xxxx()
methods at the top of the subclass, then locally-defined helper methods, then therun_test()
method. - Use
f'{x}'
for string formatting in preference to'{}'.format(x)
or'%s' % x
.
Naming guidelines
- Name the test
<area>_test.py
, where area can be one of the following:feature
for tests for full features that aren't wallet/mining/mempool, egfeature_rbf.py
interface
for tests for other interfaces (REST, ZMQ, etc), eginterface_rest.py
mempool
for tests for mempool behaviour, egmempool_reorg.py
mining
for tests for mining features, egmining_prioritisetransaction.py
p2p
for tests that explicitly test the p2p interface, egp2p_disconnect_ban.py
rpc
for tests for individual RPC methods or features, egrpc_listtransactions.py
tool
for tests for tools, egtool_wallet.py
wallet
for tests for wallet features, egwallet_keypool.py
- Use an underscore to separate words
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
rpc_decodescript.py
, notrpc_decode_script.py
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
- Don't use the redundant word
test
in the name, eginterface_zmq.py
, notinterface_zmq_test.py
General test-writing advice
- Instead of inline comments or no test documentation at all, log the comments to the test log, e.g.
self.log.info('Create enough transactions to fill a block')
. Logs make the test code easier to read and the test logic easier to debug. - Set
self.num_nodes
to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel). - Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
- Set the
self.setup_clean_chain
variable inset_test_params()
toTrue
to initialize an empty blockchain and start from the Genesis block, rather than load a premined blockchain from cache with the default value ofFalse
. The cached data directories contain a 200-block pre-mined blockchain with the spendable mining rewards being split between four nodes. Each node has 25 mature block subsidies (25x50=1250 BTC) in its wallet. Using them is much more efficient than mining blocks in your test. - When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
- Many of the core test framework classes such as
CBlock
andCTransaction
don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.
RPC and P2P definitions
Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:
/src/rpc/*
for RPCs/src/wallet/rpc*
for wallet RPCsProcessMessage()
in/src/net_processing.cpp
for parsing P2P messages
Using the P2P interface
-
P2P
s can be used to test specific P2P protocol behavior. p2p.py contains test framework p2p objects and messages.py contains all the definitions for objects passed over the network (CBlock
,CTransaction
, etc, along with the network-level wrappers for them,msg_block
,msg_tx
, etc). -
P2P tests have two threads. One thread handles all network communication with the bitcoind(s) being tested in a callback-based event loop; the other implements the test logic.
-
P2PConnection
is the class used to connect to a bitcoind.P2PInterface
contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.
P2PConnection
s can be used as such:
p2p_conn = node.add_p2p_connection(P2PInterface())
p2p_conn.send_and_ping(msg)
They can also be referenced by indexing into a TestNode
's p2ps
list, which
contains the list of test framework p2p
objects connected to itself
(it does not include any TestNode
s):
node.p2ps[0].sync_with_ping()
More examples can be found in p2p_unrequested_blocks.py, p2p_compactblocks.py.
Prototyping tests
The TestShell
class exposes the BitcoinTestFramework
functionality to interactive Python3 environments and can be used to prototype
tests. This may be especially useful in a REPL environment with session logging
utilities, such as
IPython.
The logs of such interactive sessions can later be adapted into permanent test
cases.
Test framework modules
The following are useful modules for test developers. They are located in test/functional/test_framework/.
authproxy.py
Taken from the python-bitcoinrpc repository.
test_framework.py
Base class for functional tests.
util.py
Generally useful functions.
p2p.py
Test objects for interacting with a bitcoind node over the p2p interface.
script.py
Utilities for manipulating transaction scripts (originally from python-bitcoinlib)
key.py
Test-only secp256k1 elliptic curve implementation
blocktools.py
Helper functions for creating blocks and transactions.
Benchmarking with perf
An easy way to profile node performance during functional tests is provided
for Linux platforms using perf
.
Perf will sample the running node and will generate profile data in the node's
datadir. The profile data can then be presented using perf report
or a graphical
tool like hotspot.
There are two ways of invoking perf: one is to use the --perf
flag when
running tests, which will profile each node during the entire test run: perf
begins to profile when the node starts and ends when it shuts down. The other
way is the use the profile_with_perf
context manager, e.g.
with node.profile_with_perf("send-big-msgs"):
# Perform activity on the node you're interested in profiling, e.g.:
for _ in range(10000):
node.p2ps[0].send_message(some_large_message)
To see useful textual output, run
perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less
See also:
- Installing perf
- Perf examples
- Hotspot: a GUI for perf output analysis