mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-19 14:53:43 +01:00
1001 lines
50 KiB
C++
1001 lines
50 KiB
C++
// Copyright (c) The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <cluster_linearize.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <test/util/random.h>
|
|
#include <txgraph.h>
|
|
#include <util/bitset.h>
|
|
#include <util/feefrac.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <utility>
|
|
|
|
using namespace cluster_linearize;
|
|
|
|
namespace {
|
|
|
|
/** Data type representing a naive simulated TxGraph, keeping all transactions (even from
|
|
* disconnected components) in a single DepGraph. Unlike the real TxGraph, this only models
|
|
* a single graph, and multiple instances are used to simulate main/staging. */
|
|
struct SimTxGraph
|
|
{
|
|
/** Maximum number of transactions to support simultaneously. Set this higher than txgraph's
|
|
* cluster count, so we can exercise situations with more transactions than fit in one
|
|
* cluster. */
|
|
static constexpr unsigned MAX_TRANSACTIONS = MAX_CLUSTER_COUNT_LIMIT * 2;
|
|
/** Set type to use in the simulation. */
|
|
using SetType = BitSet<MAX_TRANSACTIONS>;
|
|
/** Data type for representing positions within SimTxGraph::graph. */
|
|
using Pos = DepGraphIndex;
|
|
/** Constant to mean "missing in this graph". */
|
|
static constexpr auto MISSING = Pos(-1);
|
|
|
|
/** The dependency graph (for all transactions in the simulation, regardless of
|
|
* connectivity/clustering). */
|
|
DepGraph<SetType> graph;
|
|
/** For each position in graph, which TxGraph::Ref it corresponds with (if any). Use shared_ptr
|
|
* so that a SimTxGraph can be copied to create a staging one, while sharing Refs with
|
|
* the main graph. */
|
|
std::array<std::shared_ptr<TxGraph::Ref>, MAX_TRANSACTIONS> simmap;
|
|
/** For each TxGraph::Ref in graph, the position it corresponds with. */
|
|
std::map<const TxGraph::Ref*, Pos> simrevmap;
|
|
/** The set of TxGraph::Ref entries that have been removed, but not yet destroyed. */
|
|
std::vector<std::shared_ptr<TxGraph::Ref>> removed;
|
|
/** Whether the graph is oversized (true = yes, false = no, std::nullopt = unknown). */
|
|
std::optional<bool> oversized;
|
|
/** The configured maximum number of transactions per cluster. */
|
|
DepGraphIndex max_cluster_count;
|
|
/** Which transactions have been modified in the graph since creation, either directly or by
|
|
* being in a cluster which includes modifications. Only relevant for the staging graph. */
|
|
SetType modified;
|
|
|
|
/** Construct a new SimTxGraph with the specified maximum cluster count. */
|
|
explicit SimTxGraph(DepGraphIndex max_cluster) : max_cluster_count(max_cluster) {}
|
|
|
|
// Permit copying and moving.
|
|
SimTxGraph(const SimTxGraph&) noexcept = default;
|
|
SimTxGraph& operator=(const SimTxGraph&) noexcept = default;
|
|
SimTxGraph(SimTxGraph&&) noexcept = default;
|
|
SimTxGraph& operator=(SimTxGraph&&) noexcept = default;
|
|
|
|
/** Check whether this graph is oversized (contains a connected component whose number of
|
|
* transactions exceeds max_cluster_count. */
|
|
bool IsOversized()
|
|
{
|
|
if (!oversized.has_value()) {
|
|
// Only recompute when oversized isn't already known.
|
|
oversized = false;
|
|
auto todo = graph.Positions();
|
|
// Iterate over all connected components of the graph.
|
|
while (todo.Any()) {
|
|
auto component = graph.FindConnectedComponent(todo);
|
|
if (component.Count() > max_cluster_count) oversized = true;
|
|
todo -= component;
|
|
}
|
|
}
|
|
return *oversized;
|
|
}
|
|
|
|
void MakeModified(DepGraphIndex index)
|
|
{
|
|
modified |= graph.GetConnectedComponent(graph.Positions(), index);
|
|
}
|
|
|
|
/** Determine the number of (non-removed) transactions in the graph. */
|
|
DepGraphIndex GetTransactionCount() const { return graph.TxCount(); }
|
|
|
|
/** Get the sum of all fees/sizes in the graph. */
|
|
FeePerWeight SumAll() const
|
|
{
|
|
FeePerWeight ret;
|
|
for (auto i : graph.Positions()) {
|
|
ret += graph.FeeRate(i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Get the position where ref occurs in this simulated graph, or -1 if it does not. */
|
|
Pos Find(const TxGraph::Ref* ref) const
|
|
{
|
|
auto it = simrevmap.find(ref);
|
|
if (it != simrevmap.end()) return it->second;
|
|
return MISSING;
|
|
}
|
|
|
|
/** Given a position in this simulated graph, get the corresponding TxGraph::Ref. */
|
|
TxGraph::Ref* GetRef(Pos pos)
|
|
{
|
|
assert(graph.Positions()[pos]);
|
|
assert(simmap[pos]);
|
|
return simmap[pos].get();
|
|
}
|
|
|
|
/** Add a new transaction to the simulation. */
|
|
TxGraph::Ref* AddTransaction(const FeePerWeight& feerate)
|
|
{
|
|
assert(graph.TxCount() < MAX_TRANSACTIONS);
|
|
auto simpos = graph.AddTransaction(feerate);
|
|
MakeModified(simpos);
|
|
assert(graph.Positions()[simpos]);
|
|
simmap[simpos] = std::make_shared<TxGraph::Ref>();
|
|
auto ptr = simmap[simpos].get();
|
|
simrevmap[ptr] = simpos;
|
|
return ptr;
|
|
}
|
|
|
|
/** Add a dependency between two positions in this graph. */
|
|
void AddDependency(TxGraph::Ref* parent, TxGraph::Ref* child)
|
|
{
|
|
auto par_pos = Find(parent);
|
|
if (par_pos == MISSING) return;
|
|
auto chl_pos = Find(child);
|
|
if (chl_pos == MISSING) return;
|
|
graph.AddDependencies(SetType::Singleton(par_pos), chl_pos);
|
|
MakeModified(par_pos);
|
|
// This may invalidate our cached oversized value.
|
|
if (oversized.has_value() && !*oversized) oversized = std::nullopt;
|
|
}
|
|
|
|
/** Modify the transaction fee of a ref, if it exists. */
|
|
void SetTransactionFee(TxGraph::Ref* ref, int64_t fee)
|
|
{
|
|
auto pos = Find(ref);
|
|
if (pos == MISSING) return;
|
|
// No need to invoke MakeModified, because this equally affects main and staging.
|
|
graph.FeeRate(pos).fee = fee;
|
|
}
|
|
|
|
/** Remove the transaction in the specified position from the graph. */
|
|
void RemoveTransaction(TxGraph::Ref* ref)
|
|
{
|
|
auto pos = Find(ref);
|
|
if (pos == MISSING) return;
|
|
MakeModified(pos);
|
|
graph.RemoveTransactions(SetType::Singleton(pos));
|
|
simrevmap.erase(simmap[pos].get());
|
|
// Retain the TxGraph::Ref corresponding to this position, so the Ref destruction isn't
|
|
// invoked until the simulation explicitly decided to do so.
|
|
removed.push_back(std::move(simmap[pos]));
|
|
simmap[pos].reset();
|
|
// This may invalidate our cached oversized value.
|
|
if (oversized.has_value() && *oversized) oversized = std::nullopt;
|
|
}
|
|
|
|
/** Destroy the transaction from the graph, including from the removed set. This will
|
|
* trigger TxGraph::Ref::~Ref. reset_oversize controls whether the cached oversized
|
|
* value is cleared (destroying does not clear oversizedness in TxGraph of the main
|
|
* graph while staging exists). */
|
|
void DestroyTransaction(TxGraph::Ref* ref, bool reset_oversize)
|
|
{
|
|
auto pos = Find(ref);
|
|
if (pos == MISSING) {
|
|
// Wipe the ref, if it exists, from the removed vector. Use std::partition rather
|
|
// than std::erase because we don't care about the order of the entries that
|
|
// remain.
|
|
auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != ref; });
|
|
removed.erase(remove, removed.end());
|
|
} else {
|
|
MakeModified(pos);
|
|
graph.RemoveTransactions(SetType::Singleton(pos));
|
|
simrevmap.erase(simmap[pos].get());
|
|
simmap[pos].reset();
|
|
// This may invalidate our cached oversized value.
|
|
if (reset_oversize && oversized.has_value() && *oversized) {
|
|
oversized = std::nullopt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Construct the set with all positions in this graph corresponding to the specified
|
|
* TxGraph::Refs. All of them must occur in this graph and not be removed. */
|
|
SetType MakeSet(std::span<TxGraph::Ref* const> arg)
|
|
{
|
|
SetType ret;
|
|
for (TxGraph::Ref* ptr : arg) {
|
|
auto pos = Find(ptr);
|
|
assert(pos != Pos(-1));
|
|
ret.Set(pos);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Get the set of ancestors (desc=false) or descendants (desc=true) in this graph. */
|
|
SetType GetAncDesc(TxGraph::Ref* arg, bool desc)
|
|
{
|
|
auto pos = Find(arg);
|
|
if (pos == MISSING) return {};
|
|
return desc ? graph.Descendants(pos) : graph.Ancestors(pos);
|
|
}
|
|
|
|
/** Given a set of Refs (given as a vector of pointers), expand the set to include all its
|
|
* ancestors (desc=false) or all its descendants (desc=true) in this graph. */
|
|
void IncludeAncDesc(std::vector<TxGraph::Ref*>& arg, bool desc)
|
|
{
|
|
std::vector<TxGraph::Ref*> ret;
|
|
for (auto ptr : arg) {
|
|
auto simpos = Find(ptr);
|
|
if (simpos != MISSING) {
|
|
for (auto i : desc ? graph.Descendants(simpos) : graph.Ancestors(simpos)) {
|
|
ret.push_back(simmap[i].get());
|
|
}
|
|
} else {
|
|
ret.push_back(ptr);
|
|
}
|
|
}
|
|
// Construct deduplicated version in input (do not use std::sort/std::unique for
|
|
// deduplication as it'd rely on non-deterministic pointer comparison).
|
|
arg.clear();
|
|
for (auto ptr : ret) {
|
|
if (std::find(arg.begin(), arg.end(), ptr) == arg.end()) {
|
|
arg.push_back(ptr);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
FUZZ_TARGET(txgraph)
|
|
{
|
|
// This is a big simulation test for TxGraph, which performs a fuzz-derived sequence of valid
|
|
// operations on a TxGraph instance, as well as on a simpler (mostly) reimplementation (see
|
|
// SimTxGraph above), comparing the outcome of functions that return a result, and finally
|
|
// performing a full comparison between the two.
|
|
|
|
SeedRandomStateForTest(SeedRand::ZEROS);
|
|
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
|
|
|
/** Internal test RNG, used only for decisions which would require significant amount of data
|
|
* to be read from the provider, without realistically impacting test sensitivity. */
|
|
InsecureRandomContext rng(0xdecade2009added + buffer.size());
|
|
|
|
/** Variable used whenever an empty TxGraph::Ref is needed. */
|
|
TxGraph::Ref empty_ref;
|
|
|
|
// Decide the maximum number of transactions per cluster we will use in this simulation.
|
|
auto max_count = provider.ConsumeIntegralInRange<DepGraphIndex>(1, MAX_CLUSTER_COUNT_LIMIT);
|
|
|
|
// Construct a real graph, and a vector of simulated graphs (main, and possibly staging).
|
|
auto real = MakeTxGraph(max_count);
|
|
std::vector<SimTxGraph> sims;
|
|
sims.reserve(2);
|
|
sims.emplace_back(max_count);
|
|
|
|
/** Struct encapsulating information about a BlockBuilder that's currently live. */
|
|
struct BlockBuilderData
|
|
{
|
|
/** BlockBuilder object from real. */
|
|
std::unique_ptr<TxGraph::BlockBuilder> builder;
|
|
/** The set of transactions marked as included in *builder. */
|
|
SimTxGraph::SetType included;
|
|
/** The set of transactions marked as included or skipped in *builder. */
|
|
SimTxGraph::SetType done;
|
|
/** The last chunk feerate returned by *builder. IsEmpty() if none yet. */
|
|
FeePerWeight last_feerate;
|
|
|
|
BlockBuilderData(std::unique_ptr<TxGraph::BlockBuilder> builder_in) : builder(std::move(builder_in)) {}
|
|
};
|
|
|
|
/** Currently active block builders. */
|
|
std::vector<BlockBuilderData> block_builders;
|
|
|
|
/** Function to pick any Ref (for either sim in sims: from sim.simmap or sim.removed, or the
|
|
* empty Ref). */
|
|
auto pick_fn = [&]() noexcept -> TxGraph::Ref* {
|
|
size_t tx_count[2] = {sims[0].GetTransactionCount(), 0};
|
|
/** The number of possible choices. */
|
|
size_t choices = tx_count[0] + sims[0].removed.size() + 1;
|
|
if (sims.size() == 2) {
|
|
tx_count[1] = sims[1].GetTransactionCount();
|
|
choices += tx_count[1] + sims[1].removed.size();
|
|
}
|
|
/** Pick one of them. */
|
|
auto choice = provider.ConsumeIntegralInRange<size_t>(0, choices - 1);
|
|
// Consider both main and (if it exists) staging.
|
|
for (size_t level = 0; level < sims.size(); ++level) {
|
|
auto& sim = sims[level];
|
|
if (choice < tx_count[level]) {
|
|
// Return from graph.
|
|
for (auto i : sim.graph.Positions()) {
|
|
if (choice == 0) return sim.GetRef(i);
|
|
--choice;
|
|
}
|
|
assert(false);
|
|
} else {
|
|
choice -= tx_count[level];
|
|
}
|
|
if (choice < sim.removed.size()) {
|
|
// Return from removed.
|
|
return sim.removed[choice].get();
|
|
} else {
|
|
choice -= sim.removed.size();
|
|
}
|
|
}
|
|
// Return empty.
|
|
assert(choice == 0);
|
|
return &empty_ref;
|
|
};
|
|
|
|
/** Function to construct the correct fee-size diagram a real graph has based on its graph
|
|
* order (as reported by GetCluster(), so it works for both main and staging). */
|
|
auto get_diagram_fn = [&](bool main_only) -> std::vector<FeeFrac> {
|
|
int level = main_only ? 0 : sims.size() - 1;
|
|
auto& sim = sims[level];
|
|
// For every transaction in the graph, request its cluster, and throw them into a set.
|
|
std::set<std::vector<TxGraph::Ref*>> clusters;
|
|
for (auto i : sim.graph.Positions()) {
|
|
auto ref = sim.GetRef(i);
|
|
clusters.insert(real->GetCluster(*ref, main_only));
|
|
}
|
|
// Compute the chunkings of each (deduplicated) cluster.
|
|
size_t num_tx{0};
|
|
std::vector<FeeFrac> chunk_feerates;
|
|
for (const auto& cluster : clusters) {
|
|
num_tx += cluster.size();
|
|
std::vector<SimTxGraph::Pos> linearization;
|
|
linearization.reserve(cluster.size());
|
|
for (auto refptr : cluster) linearization.push_back(sim.Find(refptr));
|
|
for (const FeeFrac& chunk_feerate : ChunkLinearization(sim.graph, linearization)) {
|
|
chunk_feerates.push_back(chunk_feerate);
|
|
}
|
|
}
|
|
// Verify the number of transactions after deduplicating clusters. This implicitly verifies
|
|
// that GetCluster on each element of a cluster reports the cluster transactions in the same
|
|
// order.
|
|
assert(num_tx == sim.GetTransactionCount());
|
|
// Sort by feerate only, since violating topological constraints within same-feerate
|
|
// chunks won't affect diagram comparisons.
|
|
std::sort(chunk_feerates.begin(), chunk_feerates.end(), std::greater{});
|
|
return chunk_feerates;
|
|
};
|
|
|
|
LIMITED_WHILE(provider.remaining_bytes() > 0, 200) {
|
|
// Read a one-byte command.
|
|
int command = provider.ConsumeIntegral<uint8_t>();
|
|
int orig_command = command;
|
|
|
|
// Treat the lowest bit of a command as a flag (which selects a variant of some of the
|
|
// operations), and the second-lowest bit as a way of selecting main vs. staging, and leave
|
|
// the rest of the bits in command.
|
|
bool alt = command & 1;
|
|
bool use_main = command & 2;
|
|
command >>= 2;
|
|
|
|
/** Use the bottom 2 bits of command to select an entry in the block_builders vector (if
|
|
* any). These use the same bits as alt/use_main, so don't use those in actions below
|
|
* where builder_idx is used as well. */
|
|
int builder_idx = block_builders.empty() ? -1 : int((orig_command & 3) % block_builders.size());
|
|
|
|
// Provide convenient aliases for the top simulated graph (main, or staging if it exists),
|
|
// one for the simulated graph selected based on use_main (for operations that can operate
|
|
// on both graphs), and one that always refers to the main graph.
|
|
auto& top_sim = sims.back();
|
|
auto& sel_sim = use_main ? sims[0] : top_sim;
|
|
auto& main_sim = sims[0];
|
|
|
|
// Keep decrementing command for each applicable operation, until one is hit. Multiple
|
|
// iterations may be necessary.
|
|
while (true) {
|
|
if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) {
|
|
// AddTransaction.
|
|
int64_t fee;
|
|
int32_t size;
|
|
if (alt) {
|
|
// If alt is true, pick fee and size from the entire range.
|
|
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
|
size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
|
|
} else {
|
|
// Otherwise, use smaller range which consume fewer fuzz input bytes, as just
|
|
// these are likely sufficient to trigger all interesting code paths already.
|
|
fee = provider.ConsumeIntegral<uint8_t>();
|
|
size = provider.ConsumeIntegral<uint8_t>() + 1;
|
|
}
|
|
FeePerWeight feerate{fee, size};
|
|
// Create a real TxGraph::Ref.
|
|
auto ref = real->AddTransaction(feerate);
|
|
// Create a shared_ptr place in the simulation to put the Ref in.
|
|
auto ref_loc = top_sim.AddTransaction(feerate);
|
|
// Move it in place.
|
|
*ref_loc = std::move(ref);
|
|
break;
|
|
} else if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) {
|
|
// AddDependency.
|
|
auto par = pick_fn();
|
|
auto chl = pick_fn();
|
|
auto pos_par = top_sim.Find(par);
|
|
auto pos_chl = top_sim.Find(chl);
|
|
if (pos_par != SimTxGraph::MISSING && pos_chl != SimTxGraph::MISSING) {
|
|
// Determine if adding this would introduce a cycle (not allowed by TxGraph),
|
|
// and if so, skip.
|
|
if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break;
|
|
}
|
|
top_sim.AddDependency(par, chl);
|
|
real->AddDependency(*par, *chl);
|
|
break;
|
|
} else if ((block_builders.empty() || sims.size() > 1) && top_sim.removed.size() < 100 && command-- == 0) {
|
|
// RemoveTransaction. Either all its ancestors or all its descendants are also
|
|
// removed (if any), to make sure TxGraph's reordering of removals and dependencies
|
|
// has no effect.
|
|
std::vector<TxGraph::Ref*> to_remove;
|
|
to_remove.push_back(pick_fn());
|
|
top_sim.IncludeAncDesc(to_remove, alt);
|
|
// The order in which these ancestors/descendants are removed should not matter;
|
|
// randomly shuffle them.
|
|
std::shuffle(to_remove.begin(), to_remove.end(), rng);
|
|
for (TxGraph::Ref* ptr : to_remove) {
|
|
real->RemoveTransaction(*ptr);
|
|
top_sim.RemoveTransaction(ptr);
|
|
}
|
|
break;
|
|
} else if (sel_sim.removed.size() > 0 && command-- == 0) {
|
|
// ~Ref (of an already-removed transaction). Destroying a TxGraph::Ref has an
|
|
// observable effect on the TxGraph it refers to, so this simulation permits doing
|
|
// so separately from other actions on TxGraph.
|
|
|
|
// Pick a Ref of sel_sim.removed to destroy. Note that the same Ref may still occur
|
|
// in the other graph, and thus not actually trigger ~Ref yet (which is exactly
|
|
// what we want, as destroying Refs is only allowed when it does not refer to an
|
|
// existing transaction in either graph).
|
|
auto removed_pos = provider.ConsumeIntegralInRange<size_t>(0, sel_sim.removed.size() - 1);
|
|
if (removed_pos != sel_sim.removed.size() - 1) {
|
|
std::swap(sel_sim.removed[removed_pos], sel_sim.removed.back());
|
|
}
|
|
sel_sim.removed.pop_back();
|
|
break;
|
|
} else if (block_builders.empty() && command-- == 0) {
|
|
// ~Ref (of any transaction).
|
|
std::vector<TxGraph::Ref*> to_destroy;
|
|
to_destroy.push_back(pick_fn());
|
|
while (true) {
|
|
// Keep adding either the ancestors or descendants the already picked
|
|
// transactions have in both graphs (main and staging) combined. Destroying
|
|
// will trigger deletions in both, so to have consistent TxGraph behavior, the
|
|
// set must be closed under ancestors, or descendants, in both graphs.
|
|
auto old_size = to_destroy.size();
|
|
for (auto& sim : sims) sim.IncludeAncDesc(to_destroy, alt);
|
|
if (to_destroy.size() == old_size) break;
|
|
}
|
|
// The order in which these ancestors/descendants are destroyed should not matter;
|
|
// randomly shuffle them.
|
|
std::shuffle(to_destroy.begin(), to_destroy.end(), rng);
|
|
for (TxGraph::Ref* ptr : to_destroy) {
|
|
for (size_t level = 0; level < sims.size(); ++level) {
|
|
sims[level].DestroyTransaction(ptr, level == sims.size() - 1);
|
|
}
|
|
}
|
|
break;
|
|
} else if (block_builders.empty() && command-- == 0) {
|
|
// SetTransactionFee.
|
|
int64_t fee;
|
|
if (alt) {
|
|
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
|
} else {
|
|
fee = provider.ConsumeIntegral<uint8_t>();
|
|
}
|
|
auto ref = pick_fn();
|
|
real->SetTransactionFee(*ref, fee);
|
|
for (auto& sim : sims) {
|
|
sim.SetTransactionFee(ref, fee);
|
|
}
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// GetTransactionCount.
|
|
assert(real->GetTransactionCount(use_main) == sel_sim.GetTransactionCount());
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// Exists.
|
|
auto ref = pick_fn();
|
|
bool exists = real->Exists(*ref, use_main);
|
|
bool should_exist = sel_sim.Find(ref) != SimTxGraph::MISSING;
|
|
assert(exists == should_exist);
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// IsOversized.
|
|
assert(sel_sim.IsOversized() == real->IsOversized(use_main));
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// GetIndividualFeerate.
|
|
auto ref = pick_fn();
|
|
auto feerate = real->GetIndividualFeerate(*ref);
|
|
bool found{false};
|
|
for (auto& sim : sims) {
|
|
auto simpos = sim.Find(ref);
|
|
if (simpos != SimTxGraph::MISSING) {
|
|
found = true;
|
|
assert(feerate == sim.graph.FeeRate(simpos));
|
|
}
|
|
}
|
|
if (!found) assert(feerate.IsEmpty());
|
|
break;
|
|
} else if (!main_sim.IsOversized() && command-- == 0) {
|
|
// GetMainChunkFeerate.
|
|
auto ref = pick_fn();
|
|
auto feerate = real->GetMainChunkFeerate(*ref);
|
|
auto simpos = main_sim.Find(ref);
|
|
if (simpos == SimTxGraph::MISSING) {
|
|
assert(feerate.IsEmpty());
|
|
} else {
|
|
// Just do some quick checks that the reported value is in range. A full
|
|
// recomputation of expected chunk feerates is done at the end.
|
|
assert(feerate.size >= main_sim.graph.FeeRate(simpos).size);
|
|
assert(feerate.size <= main_sim.SumAll().size);
|
|
}
|
|
break;
|
|
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
|
// GetAncestors/GetDescendants.
|
|
auto ref = pick_fn();
|
|
auto result = alt ? real->GetDescendants(*ref, use_main)
|
|
: real->GetAncestors(*ref, use_main);
|
|
assert(result.size() <= max_count);
|
|
auto result_set = sel_sim.MakeSet(result);
|
|
assert(result.size() == result_set.Count());
|
|
auto expect_set = sel_sim.GetAncDesc(ref, alt);
|
|
assert(result_set == expect_set);
|
|
break;
|
|
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
|
// GetAncestorsUnion/GetDescendantsUnion.
|
|
std::vector<TxGraph::Ref*> refs;
|
|
// Gather a list of up to 15 Ref pointers.
|
|
auto count = provider.ConsumeIntegralInRange<size_t>(0, 15);
|
|
refs.resize(count);
|
|
for (size_t i = 0; i < count; ++i) {
|
|
refs[i] = pick_fn();
|
|
}
|
|
// Their order should not matter, shuffle them.
|
|
std::shuffle(refs.begin(), refs.end(), rng);
|
|
// Invoke the real function, and convert to SimPos set.
|
|
auto result = alt ? real->GetDescendantsUnion(refs, use_main)
|
|
: real->GetAncestorsUnion(refs, use_main);
|
|
auto result_set = sel_sim.MakeSet(result);
|
|
assert(result.size() == result_set.Count());
|
|
// Compute the expected result.
|
|
SimTxGraph::SetType expect_set;
|
|
for (TxGraph::Ref* ref : refs) expect_set |= sel_sim.GetAncDesc(ref, alt);
|
|
// Compare.
|
|
assert(result_set == expect_set);
|
|
break;
|
|
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
|
// GetCluster.
|
|
auto ref = pick_fn();
|
|
auto result = real->GetCluster(*ref, use_main);
|
|
// Check cluster count limit.
|
|
assert(result.size() <= max_count);
|
|
// Require the result to be topologically valid and not contain duplicates.
|
|
auto left = sel_sim.graph.Positions();
|
|
for (auto refptr : result) {
|
|
auto simpos = sel_sim.Find(refptr);
|
|
assert(simpos != SimTxGraph::MISSING);
|
|
assert(left[simpos]);
|
|
left.Reset(simpos);
|
|
assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left));
|
|
}
|
|
// Require the set to be connected.
|
|
auto result_set = sel_sim.MakeSet(result);
|
|
assert(sel_sim.graph.IsConnected(result_set));
|
|
// If ref exists, the result must contain it. If not, it must be empty.
|
|
auto simpos = sel_sim.Find(ref);
|
|
if (simpos != SimTxGraph::MISSING) {
|
|
assert(result_set[simpos]);
|
|
} else {
|
|
assert(result_set.None());
|
|
}
|
|
// Require the set not to have ancestors or descendants outside of it.
|
|
for (auto i : result_set) {
|
|
assert(sel_sim.graph.Ancestors(i).IsSubsetOf(result_set));
|
|
assert(sel_sim.graph.Descendants(i).IsSubsetOf(result_set));
|
|
}
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// HaveStaging.
|
|
assert((sims.size() == 2) == real->HaveStaging());
|
|
break;
|
|
} else if (sims.size() < 2 && command-- == 0) {
|
|
// StartStaging.
|
|
sims.emplace_back(sims.back());
|
|
sims.back().modified = SimTxGraph::SetType{};
|
|
real->StartStaging();
|
|
break;
|
|
} else if (block_builders.empty() && sims.size() > 1 && command-- == 0) {
|
|
// CommitStaging.
|
|
real->CommitStaging();
|
|
sims.erase(sims.begin());
|
|
break;
|
|
} else if (sims.size() > 1 && command-- == 0) {
|
|
// AbortStaging.
|
|
real->AbortStaging();
|
|
sims.pop_back();
|
|
// Reset the cached oversized value (if TxGraph::Ref destructions triggered
|
|
// removals of main transactions while staging was active, then aborting will
|
|
// cause it to be re-evaluated in TxGraph).
|
|
sims.back().oversized = std::nullopt;
|
|
break;
|
|
} else if (!main_sim.IsOversized() && command-- == 0) {
|
|
// CompareMainOrder.
|
|
auto ref_a = pick_fn();
|
|
auto ref_b = pick_fn();
|
|
auto sim_a = main_sim.Find(ref_a);
|
|
auto sim_b = main_sim.Find(ref_b);
|
|
// Both transactions must exist in the main graph.
|
|
if (sim_a == SimTxGraph::MISSING || sim_b == SimTxGraph::MISSING) break;
|
|
auto cmp = real->CompareMainOrder(*ref_a, *ref_b);
|
|
// Distinct transactions have distinct places.
|
|
if (sim_a != sim_b) assert(cmp != 0);
|
|
// Ancestors go before descendants.
|
|
if (main_sim.graph.Ancestors(sim_a)[sim_b]) assert(cmp >= 0);
|
|
if (main_sim.graph.Descendants(sim_a)[sim_b]) assert(cmp <= 0);
|
|
// Do not verify consistency with chunk feerates, as we cannot easily determine
|
|
// these here without making more calls to real, which could affect its internal
|
|
// state. A full comparison is done at the end.
|
|
break;
|
|
} else if (!sel_sim.IsOversized() && command-- == 0) {
|
|
// CountDistinctClusters.
|
|
std::vector<TxGraph::Ref*> refs;
|
|
// Gather a list of up to 15 (or up to 255) Ref pointers.
|
|
auto count = provider.ConsumeIntegralInRange<size_t>(0, alt ? 255 : 15);
|
|
refs.resize(count);
|
|
for (size_t i = 0; i < count; ++i) {
|
|
refs[i] = pick_fn();
|
|
}
|
|
// Their order should not matter, shuffle them.
|
|
std::shuffle(refs.begin(), refs.end(), rng);
|
|
// Invoke the real function.
|
|
auto result = real->CountDistinctClusters(refs, use_main);
|
|
// Build a set with representatives of the clusters the Refs occur in in the
|
|
// simulated graph. For each, remember the lowest-index transaction SimPos in the
|
|
// cluster.
|
|
SimTxGraph::SetType sim_reps;
|
|
for (auto ref : refs) {
|
|
// Skip Refs that do not occur in the simulated graph.
|
|
auto simpos = sel_sim.Find(ref);
|
|
if (simpos == SimTxGraph::MISSING) continue;
|
|
// Find the component that includes ref.
|
|
auto component = sel_sim.graph.GetConnectedComponent(sel_sim.graph.Positions(), simpos);
|
|
// Remember the lowest-index SimPos in component, as a representative for it.
|
|
assert(component.Any());
|
|
sim_reps.Set(component.First());
|
|
}
|
|
// Compare the number of deduplicated representatives with the value returned by
|
|
// the real function.
|
|
assert(result == sim_reps.Count());
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// DoWork.
|
|
real->DoWork();
|
|
break;
|
|
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {
|
|
// GetMainStagingDiagrams()
|
|
auto [real_main_diagram, real_staged_diagram] = real->GetMainStagingDiagrams();
|
|
auto real_sum_main = std::accumulate(real_main_diagram.begin(), real_main_diagram.end(), FeeFrac{});
|
|
auto real_sum_staged = std::accumulate(real_staged_diagram.begin(), real_staged_diagram.end(), FeeFrac{});
|
|
auto real_gain = real_sum_staged - real_sum_main;
|
|
auto sim_gain = sims[1].SumAll() - sims[0].SumAll();
|
|
// Just check that the total fee gained/lost and size gained/lost according to the
|
|
// diagram matches the difference in these values in the simulated graph. A more
|
|
// complete check of the GetMainStagingDiagrams result is performed at the end.
|
|
assert(sim_gain == real_gain);
|
|
// Check that the feerates in each diagram are monotonically decreasing.
|
|
for (size_t i = 1; i < real_main_diagram.size(); ++i) {
|
|
assert(FeeRateCompare(real_main_diagram[i], real_main_diagram[i - 1]) <= 0);
|
|
}
|
|
for (size_t i = 1; i < real_staged_diagram.size(); ++i) {
|
|
assert(FeeRateCompare(real_staged_diagram[i], real_staged_diagram[i - 1]) <= 0);
|
|
}
|
|
break;
|
|
} else if (block_builders.size() < 4 && !main_sim.IsOversized() && command-- == 0) {
|
|
// GetBlockBuilder.
|
|
block_builders.emplace_back(real->GetBlockBuilder());
|
|
break;
|
|
} else if (!block_builders.empty() && command-- == 0) {
|
|
// ~BlockBuilder.
|
|
block_builders.erase(block_builders.begin() + builder_idx);
|
|
break;
|
|
} else if (!block_builders.empty() && command-- == 0) {
|
|
// BlockBuilder::GetCurrentChunk, followed by Include/Skip.
|
|
auto& builder_data = block_builders[builder_idx];
|
|
auto new_included = builder_data.included;
|
|
auto new_done = builder_data.done;
|
|
auto chunk = builder_data.builder->GetCurrentChunk();
|
|
if (chunk) {
|
|
// Chunk feerates must be monotonously decreasing.
|
|
if (!builder_data.last_feerate.IsEmpty()) {
|
|
assert(!(chunk->second >> builder_data.last_feerate));
|
|
}
|
|
builder_data.last_feerate = chunk->second;
|
|
// Verify the contents of GetCurrentChunk.
|
|
FeePerWeight sum_feerate;
|
|
for (TxGraph::Ref* ref : chunk->first) {
|
|
// Each transaction in the chunk must exist in the main graph.
|
|
auto simpos = main_sim.Find(ref);
|
|
assert(simpos != SimTxGraph::MISSING);
|
|
// Verify the claimed chunk feerate.
|
|
sum_feerate += main_sim.graph.FeeRate(simpos);
|
|
// Make sure no transaction is reported twice.
|
|
assert(!new_done[simpos]);
|
|
new_done.Set(simpos);
|
|
// The concatenation of all included transactions must be topologically valid.
|
|
new_included.Set(simpos);
|
|
assert(main_sim.graph.Ancestors(simpos).IsSubsetOf(new_included));
|
|
}
|
|
assert(sum_feerate == chunk->second);
|
|
} else {
|
|
// When we reach the end, if nothing was skipped, the entire graph should have
|
|
// been reported.
|
|
if (builder_data.done == builder_data.included) {
|
|
assert(builder_data.done.Count() == main_sim.GetTransactionCount());
|
|
}
|
|
}
|
|
// Possibly invoke GetCurrentChunk() again, which should give the same result.
|
|
if ((orig_command % 7) >= 5) {
|
|
auto chunk2 = builder_data.builder->GetCurrentChunk();
|
|
assert(chunk == chunk2);
|
|
}
|
|
// Skip or include.
|
|
if ((orig_command % 5) >= 3) {
|
|
// Skip.
|
|
builder_data.builder->Skip();
|
|
} else {
|
|
// Include.
|
|
builder_data.builder->Include();
|
|
builder_data.included = new_included;
|
|
}
|
|
builder_data.done = new_done;
|
|
break;
|
|
} else if (!main_sim.IsOversized() && command-- == 0) {
|
|
// GetWorstMainChunk.
|
|
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
|
|
// Just do some sanity checks here. Consistency with GetBlockBuilder is checked
|
|
// below.
|
|
if (main_sim.GetTransactionCount() == 0) {
|
|
assert(worst_chunk.empty());
|
|
assert(worst_chunk_feerate.IsEmpty());
|
|
} else {
|
|
assert(!worst_chunk.empty());
|
|
SimTxGraph::SetType done;
|
|
FeePerWeight sum;
|
|
for (TxGraph::Ref* ref : worst_chunk) {
|
|
// Each transaction in the chunk must exist in the main graph.
|
|
auto simpos = main_sim.Find(ref);
|
|
assert(simpos != SimTxGraph::MISSING);
|
|
sum += main_sim.graph.FeeRate(simpos);
|
|
// Make sure the chunk contains no duplicate transactions.
|
|
assert(!done[simpos]);
|
|
done.Set(simpos);
|
|
// All elements are preceded by all their descendants.
|
|
assert(main_sim.graph.Descendants(simpos).IsSubsetOf(done));
|
|
}
|
|
assert(sum == worst_chunk_feerate);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// After running all modifications, perform an internal sanity check (before invoking
|
|
// inspectors that may modify the internal state).
|
|
real->SanityCheck();
|
|
|
|
if (!sims[0].IsOversized()) {
|
|
// If the main graph is not oversized, verify the total ordering implied by
|
|
// CompareMainOrder.
|
|
// First construct two distinct randomized permutations of the positions in sims[0].
|
|
std::vector<SimTxGraph::Pos> vec1;
|
|
for (auto i : sims[0].graph.Positions()) vec1.push_back(i);
|
|
std::shuffle(vec1.begin(), vec1.end(), rng);
|
|
auto vec2 = vec1;
|
|
std::shuffle(vec2.begin(), vec2.end(), rng);
|
|
if (vec1 == vec2) std::next_permutation(vec2.begin(), vec2.end());
|
|
// Sort both according to CompareMainOrder. By having randomized starting points, the order
|
|
// of CompareMainOrder invocations is somewhat randomized as well.
|
|
auto cmp = [&](SimTxGraph::Pos a, SimTxGraph::Pos b) noexcept {
|
|
return real->CompareMainOrder(*sims[0].GetRef(a), *sims[0].GetRef(b)) < 0;
|
|
};
|
|
std::sort(vec1.begin(), vec1.end(), cmp);
|
|
std::sort(vec2.begin(), vec2.end(), cmp);
|
|
|
|
// Verify the resulting orderings are identical. This could only fail if the ordering was
|
|
// not total.
|
|
assert(vec1 == vec2);
|
|
|
|
// Verify that the ordering is topological.
|
|
auto todo = sims[0].graph.Positions();
|
|
for (auto i : vec1) {
|
|
todo.Reset(i);
|
|
assert(!sims[0].graph.Ancestors(i).Overlaps(todo));
|
|
}
|
|
assert(todo.None());
|
|
|
|
// For every transaction in the total ordering, find a random one before it and after it,
|
|
// and compare their chunk feerates, which must be consistent with the ordering.
|
|
for (size_t pos = 0; pos < vec1.size(); ++pos) {
|
|
auto pos_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[pos]));
|
|
if (pos > 0) {
|
|
size_t before = rng.randrange<size_t>(pos);
|
|
auto before_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[before]));
|
|
assert(FeeRateCompare(before_feerate, pos_feerate) >= 0);
|
|
}
|
|
if (pos + 1 < vec1.size()) {
|
|
size_t after = pos + 1 + rng.randrange<size_t>(vec1.size() - 1 - pos);
|
|
auto after_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[after]));
|
|
assert(FeeRateCompare(after_feerate, pos_feerate) <= 0);
|
|
}
|
|
}
|
|
|
|
// The same order should be obtained through a BlockBuilder as implied by CompareMainOrder,
|
|
// if nothing is skipped.
|
|
auto builder = real->GetBlockBuilder();
|
|
std::vector<SimTxGraph::Pos> vec_builder;
|
|
std::vector<TxGraph::Ref*> last_chunk;
|
|
FeePerWeight last_chunk_feerate;
|
|
while (auto chunk = builder->GetCurrentChunk()) {
|
|
FeePerWeight sum;
|
|
for (TxGraph::Ref* ref : chunk->first) {
|
|
// The reported chunk feerate must match the chunk feerate obtained by asking
|
|
// it for each of the chunk's transactions individually.
|
|
assert(real->GetMainChunkFeerate(*ref) == chunk->second);
|
|
// Verify the chunk feerate matches the sum of the reported individual feerates.
|
|
sum += real->GetIndividualFeerate(*ref);
|
|
// Chunks must contain transactions that exist in the graph.
|
|
auto simpos = sims[0].Find(ref);
|
|
assert(simpos != SimTxGraph::MISSING);
|
|
vec_builder.push_back(simpos);
|
|
}
|
|
assert(sum == chunk->second);
|
|
last_chunk = std::move(chunk->first);
|
|
last_chunk_feerate = chunk->second;
|
|
builder->Include();
|
|
}
|
|
assert(vec_builder == vec1);
|
|
|
|
// The last chunk returned by the BlockBuilder must match GetWorstMainChunk, in reverse.
|
|
std::reverse(last_chunk.begin(), last_chunk.end());
|
|
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
|
|
assert(last_chunk == worst_chunk);
|
|
assert(last_chunk_feerate == worst_chunk_feerate);
|
|
|
|
// Check that the implied ordering gives rise to a combined diagram that matches the
|
|
// diagram constructed from the individual cluster linearization chunkings.
|
|
auto main_real_diagram = get_diagram_fn(/*main_only=*/true);
|
|
auto main_implied_diagram = ChunkLinearization(sims[0].graph, vec1);
|
|
assert(CompareChunks(main_real_diagram, main_implied_diagram) == 0);
|
|
|
|
if (sims.size() >= 2 && !sims[1].IsOversized()) {
|
|
// When the staging graph is not oversized as well, call GetMainStagingDiagrams, and
|
|
// fully verify the result.
|
|
auto [main_cmp_diagram, stage_cmp_diagram] = real->GetMainStagingDiagrams();
|
|
// Check that the feerates in each diagram are monotonically decreasing.
|
|
for (size_t i = 1; i < main_cmp_diagram.size(); ++i) {
|
|
assert(FeeRateCompare(main_cmp_diagram[i], main_cmp_diagram[i - 1]) <= 0);
|
|
}
|
|
for (size_t i = 1; i < stage_cmp_diagram.size(); ++i) {
|
|
assert(FeeRateCompare(stage_cmp_diagram[i], stage_cmp_diagram[i - 1]) <= 0);
|
|
}
|
|
// Treat the diagrams as sets of chunk feerates, and sort them in the same way so that
|
|
// std::set_difference can be used on them below. The exact ordering does not matter
|
|
// here, but it has to be consistent with the one used in main_real_diagram and
|
|
// stage_real_diagram).
|
|
std::sort(main_cmp_diagram.begin(), main_cmp_diagram.end(), std::greater{});
|
|
std::sort(stage_cmp_diagram.begin(), stage_cmp_diagram.end(), std::greater{});
|
|
// Find the chunks that appear in main_diagram but are missing from main_cmp_diagram.
|
|
// This is allowed, because GetMainStagingDiagrams omits clusters in main unaffected
|
|
// by staging.
|
|
std::vector<FeeFrac> missing_main_cmp;
|
|
std::set_difference(main_real_diagram.begin(), main_real_diagram.end(),
|
|
main_cmp_diagram.begin(), main_cmp_diagram.end(),
|
|
std::inserter(missing_main_cmp, missing_main_cmp.end()),
|
|
std::greater{});
|
|
assert(main_cmp_diagram.size() + missing_main_cmp.size() == main_real_diagram.size());
|
|
// Do the same for chunks in stage_diagram missing from stage_cmp_diagram.
|
|
auto stage_real_diagram = get_diagram_fn(/*main_only=*/false);
|
|
std::vector<FeeFrac> missing_stage_cmp;
|
|
std::set_difference(stage_real_diagram.begin(), stage_real_diagram.end(),
|
|
stage_cmp_diagram.begin(), stage_cmp_diagram.end(),
|
|
std::inserter(missing_stage_cmp, missing_stage_cmp.end()),
|
|
std::greater{});
|
|
assert(stage_cmp_diagram.size() + missing_stage_cmp.size() == stage_real_diagram.size());
|
|
// The missing chunks must be equal across main & staging (otherwise they couldn't have
|
|
// been omitted).
|
|
assert(missing_main_cmp == missing_stage_cmp);
|
|
|
|
// The missing part must include at least all transactions in staging which have not been
|
|
// modified, or been in a cluster together with modified transactions, since they were
|
|
// copied from main. Note that due to the reordering of removals w.r.t. dependency
|
|
// additions, it is possible that the real implementation found more unaffected things.
|
|
FeeFrac missing_real;
|
|
for (const auto& feerate : missing_main_cmp) missing_real += feerate;
|
|
FeeFrac missing_expected = sims[1].graph.FeeRate(sims[1].graph.Positions() - sims[1].modified);
|
|
// Note that missing_real.fee < missing_expected.fee is possible to due the presence of
|
|
// negative-fee transactions.
|
|
assert(missing_real.size >= missing_expected.size);
|
|
}
|
|
}
|
|
|
|
assert(real->HaveStaging() == (sims.size() > 1));
|
|
|
|
// Try to run a full comparison, for both main_only=false and main_only=true in TxGraph
|
|
// inspector functions that support both.
|
|
for (int main_only = 0; main_only < 2; ++main_only) {
|
|
auto& sim = main_only ? sims[0] : sims.back();
|
|
// Compare simple properties of the graph with the simulation.
|
|
assert(real->IsOversized(main_only) == sim.IsOversized());
|
|
assert(real->GetTransactionCount(main_only) == sim.GetTransactionCount());
|
|
// If the graph (and the simulation) are not oversized, perform a full comparison.
|
|
if (!sim.IsOversized()) {
|
|
auto todo = sim.graph.Positions();
|
|
// Iterate over all connected components of the resulting (simulated) graph, each of which
|
|
// should correspond to a cluster in the real one.
|
|
while (todo.Any()) {
|
|
auto component = sim.graph.FindConnectedComponent(todo);
|
|
todo -= component;
|
|
// Iterate over the transactions in that component.
|
|
for (auto i : component) {
|
|
// Check its individual feerate against simulation.
|
|
assert(sim.graph.FeeRate(i) == real->GetIndividualFeerate(*sim.GetRef(i)));
|
|
// Check its ancestors against simulation.
|
|
auto expect_anc = sim.graph.Ancestors(i);
|
|
auto anc = sim.MakeSet(real->GetAncestors(*sim.GetRef(i), main_only));
|
|
assert(anc.Count() <= max_count);
|
|
assert(anc == expect_anc);
|
|
// Check its descendants against simulation.
|
|
auto expect_desc = sim.graph.Descendants(i);
|
|
auto desc = sim.MakeSet(real->GetDescendants(*sim.GetRef(i), main_only));
|
|
assert(desc.Count() <= max_count);
|
|
assert(desc == expect_desc);
|
|
// Check the cluster the transaction is part of.
|
|
auto cluster = real->GetCluster(*sim.GetRef(i), main_only);
|
|
assert(cluster.size() <= max_count);
|
|
assert(sim.MakeSet(cluster) == component);
|
|
// Check that the cluster is reported in a valid topological order (its
|
|
// linearization).
|
|
std::vector<DepGraphIndex> simlin;
|
|
SimTxGraph::SetType done;
|
|
for (TxGraph::Ref* ptr : cluster) {
|
|
auto simpos = sim.Find(ptr);
|
|
assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done));
|
|
done.Set(simpos);
|
|
assert(sim.graph.Ancestors(simpos).IsSubsetOf(done));
|
|
simlin.push_back(simpos);
|
|
}
|
|
// Construct a chunking object for the simulated graph, using the reported cluster
|
|
// linearization as ordering, and compare it against the reported chunk feerates.
|
|
if (sims.size() == 1 || main_only) {
|
|
cluster_linearize::LinearizationChunking simlinchunk(sim.graph, simlin);
|
|
DepGraphIndex idx{0};
|
|
for (unsigned chunknum = 0; chunknum < simlinchunk.NumChunksLeft(); ++chunknum) {
|
|
auto chunk = simlinchunk.GetChunk(chunknum);
|
|
// Require that the chunks of cluster linearizations are connected (this must
|
|
// be the case as all linearizations inside are PostLinearized).
|
|
assert(sim.graph.IsConnected(chunk.transactions));
|
|
// Check the chunk feerates of all transactions in the cluster.
|
|
while (chunk.transactions.Any()) {
|
|
assert(chunk.transactions[simlin[idx]]);
|
|
chunk.transactions.Reset(simlin[idx]);
|
|
assert(chunk.feerate == real->GetMainChunkFeerate(*cluster[idx]));
|
|
++idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity check again (because invoking inspectors may modify internal unobservable state).
|
|
real->SanityCheck();
|
|
|
|
// Kill the block builders.
|
|
block_builders.clear();
|
|
// Kill the TxGraph object.
|
|
real.reset();
|
|
// Kill the simulated graphs, with all remaining Refs in it. If any, this verifies that Refs
|
|
// can outlive the TxGraph that created them.
|
|
sims.clear();
|
|
}
|