bff7c66e67aa2f18ef70139338643656a54444fe Add documentation to contrib folder (Troy Giorshev) 381f77be858d7417209b6de0b7cd23cb7eb99261 Add Message Capture Test (Troy Giorshev) e4f378a505922c0f544b4cfbfdb169e884e02be9 Add capture parser (Troy Giorshev) 4d1a582549bc982d55e24585b0ba06f92f21e9da Call CaptureMessage at appropriate locations (Troy Giorshev) f2a77ff97bec09dd5fcc043d8659d8ec5dfb87c2 Add CaptureMessage (Troy Giorshev) dbf779d5deb04f55c6e8493ce4e12ed4628638f3 Clean PushMessage and ProcessMessages (Troy Giorshev) Pull request description: This PR introduces per-peer message capture into Bitcoin Core. 📓 ## Purpose The purpose and scope of this feature is intentionally limited. It answers a question anyone new to Bitcoin's P2P protocol has had: "Can I see what messages my node is sending and receiving?". ## Functionality When a new debug-only command line argument `capturemessages` is set, any message that the node receives or sends is captured. The capture occurs in the MessageHandler thread. When receiving a message, it is captured as soon as the MessageHandler thread takes the message off of the vProcessMsg queue. When sending, the message is captured just before the message is pushed onto the vSendMsg queue. The message capture is as minimal as possible to reduce the performance impact on the node. Messages are captured to a new `message_capture` folder in the datadir. Each node has their own subfolder named with their IP address and port. Inside, received and sent messages are captured into two binary files, msgs_recv.dat and msgs_sent.dat, like so: ``` message_capture/203.0.113.7:56072/msgs_recv.dat message_capture/203.0.113.7:56072/msgs_sent.dat ``` Because the messages are raw binary dumps, included in this PR is a Python parsing tool to convert the binary files into human-readable JSON. This script has been placed on its own and out of the way in the new `contrib/message-capture` folder. Its usage is simple and easily discovered by the autogenerated `-h` option. ## Future Maintenance I sympathize greatly with anyone who says "the best code is no code". The future maintenance of this feature will be minimal. The logic to deserialize the payload of the p2p messages exists in our testing framework. As long as our testing framework works, so will this tool. Additionally, I hope that the simplicity of this tool will mean that it gets used frequently, so that problems will be discovered and solved when they are small. ## FAQ "Why not just use Wireshark" Yes, Wireshark has the ability to filter and decode Bitcoin messages. However, the purpose of the message capture added in this PR is to assist with debugging, primarily for new developers looking to improve their knowledge of the Bitcoin Protocol. This drives the design in a different direction than Wireshark, in two different ways. First, this tool must be convenient and simple to use. Using an external tool, like Wireshark, requires setup and interpretation of the results. To a new user who doesn't necessarily know what to expect, this is unnecessary difficulty. This tool, on the other hand, "just works". Turn on the command line flag, run your node, run the script, read the JSON. Second, because this tool is being used for debugging, we want it to be as close to the true behavior of the node as possible. A lot can happen in the SocketHandler thread that would be missed by Wireshark. Additionally, if we are to use Wireshark, we are at the mercy of whoever it maintaining the protocol in Wireshark, both as to it being accurate and recent. As can be seen by the **many** previous attempts to include Bitcoin in Wireshark (google "bitcoin dissector") this is easier said than done. Lastly, I truly believe that this tool will be used significantly more by being included in the codebase. It's just that much more discoverable. ACKs for top commit: MarcoFalke: re-ACK bff7c66e67aa2f18ef70139338643656a54444fe only some minor changes: 👚 jnewbery: utACK bff7c66e67aa2f18ef70139338643656a54444fe theStack: re-ACK bff7c66e67aa2f18ef70139338643656a54444fe Tree-SHA512: e59e3160422269221f70f98720b47842775781c247c064071d546c24fa7a35a0e5534e8baa4b4591a750d7eb16de6b4ecf54cbee6d193b261f4f104e28c15f47
This directory contains integration tests that test bitcoind and its utilities in their entirety. It does not contain unit tests, which can be found in /src/test, /src/wallet/test, etc.
This directory contains the following sets of tests:
- functional which test the functionality of bitcoind and bitcoin-qt by interacting with them through the RPC and P2P interfaces.
- util which tests the bitcoin utilities, currently only bitcoin-tx.
- lint which perform various static analysis checks.
The util tests are run as part of make check
target. The functional
tests and lint scripts can be run as explained in the sections below.
Running tests locally
Before tests can be run locally, Bitcoin Core must be built. See the building instructions for help.
Functional tests
Dependencies
The ZMQ functional test requires a python ZMQ library. To install it:
- on Unix, run
sudo apt-get install python3-zmq
- on mac OS, run
pip3 install pyzmq
Running the tests
Individual tests can be run by directly calling the test script, e.g.:
test/functional/feature_rbf.py
or can be run through the test_runner harness, eg:
test/functional/test_runner.py feature_rbf.py
You can run any combination (incl. duplicates) of tests by calling:
test/functional/test_runner.py <testname1> <testname2> <testname3> ...
Wildcard test names can be passed, if the paths are coherent and the test runner
is called from a bash
shell or similar that does the globbing. For example,
to run all the wallet tests:
test/functional/test_runner.py test/functional/wallet*
functional/test_runner.py functional/wallet* (called from the test/ directory)
test_runner.py wallet* (called from the test/functional/ directory)
but not
test/functional/test_runner.py wallet*
Combinations of wildcards can be passed:
test/functional/test_runner.py ./test/functional/tool* test/functional/mempool*
test_runner.py tool* mempool*
Run the regression test suite with:
test/functional/test_runner.py
Run all possible tests with
test/functional/test_runner.py --extended
By default, up to 4 tests will be run in parallel by test_runner. To specify
how many jobs to run, append --jobs=n
The individual tests and the test_runner harness have many command-line
options. Run test/functional/test_runner.py -h
to see them all.
Troubleshooting and debugging test failures
Resource contention
The P2P and RPC ports used by the bitcoind nodes-under-test are chosen to make conflicts with other processes unlikely. However, if there is another bitcoind process running on the system (perhaps from a previous test which hasn't successfully killed all its bitcoind nodes), then there may be a port conflict which will cause the test to fail. It is recommended that you run the tests on a system where no other bitcoind processes are running.
On linux, the test framework will warn if there is another bitcoind process running when the tests are started.
If there are zombie bitcoind processes after test failure, you can kill them by running the following commands. Note that these commands will kill all bitcoind processes running on the system, so should not be used if any non-test bitcoind processes are being run.
killall bitcoind
or
pkill -9 bitcoind
Data directory cache
A pre-mined blockchain with 200 blocks is generated the first time a functional test is run and is stored in test/cache. This speeds up test startup times since new blockchains don't need to be generated for each test. However, the cache may get into a bad state, in which case tests will fail. If this happens, remove the cache directory (and make sure bitcoind processes are stopped as above):
rm -rf test/cache
killall bitcoind
Test logging
The tests contain logging at five different levels (DEBUG, INFO, WARNING, ERROR
and CRITICAL). From within your functional tests you can log to these different
levels using the logger included in the test_framework, e.g.
self.log.debug(object)
. By default:
- when run through the test_runner harness, all logs are written to
test_framework.log
and no logs are output to the console. - when run directly, all logs are written to
test_framework.log
and INFO level and above are output to the console. - when run by our CI (Continuous Integration), no logs are output to the console. However, if a test
fails, the
test_framework.log
and bitcoinddebug.log
s will all be dumped to the console to help troubleshooting.
These log files can be located under the test data directory (which is always printed in the first line of test output):
<test data directory>/test_framework.log
<test data directory>/node<node number>/regtest/debug.log
.
The node number identifies the relevant test node, starting from node0
, which
corresponds to its position in the nodes list of the specific test,
e.g. self.nodes[0]
.
To change the level of logs output to the console, use the -l
command line
argument.
test_framework.log
and bitcoind debug.log
s can be combined into a single
aggregate log by running the combine_logs.py
script. The output can be plain
text, colorized text or html. For example:
test/functional/combine_logs.py -c <test data directory> | less -r
will pipe the colorized logs from the test into less.
Use --tracerpc
to trace out all the RPC calls and responses to the console. For
some tests (eg any that use submitblock
to submit a full block over RPC),
this can result in a lot of screen output.
By default, the test data directory will be deleted after a successful run.
Use --nocleanup
to leave the test data directory intact. The test data
directory is never deleted after a failed test.
Attaching a debugger
A python debugger can be attached to tests at any point. Just add the line:
import pdb; pdb.set_trace()
anywhere in the test. You will then be able to inspect variables, as well as call methods that interact with the bitcoind nodes-under-test.
If further introspection of the bitcoind instances themselves becomes
necessary, this can be accomplished by first setting a pdb breakpoint
at an appropriate location, running the test to that point, then using
gdb
(or lldb
on macOS) to attach to the process and debug.
For instance, to attach to self.node[1]
during a run you can get
the pid of the node within pdb
.
(pdb) self.node[1].process.pid
Alternatively, you can find the pid by inspecting the temp folder for the specific test you are running. The path to that folder is printed at the beginning of every test run:
2017-06-27 14:13:56.686000 TestFramework (INFO): Initializing test directory /tmp/user/1000/testo9vsdjo3
Use the path to find the pid file in the temp folder:
cat /tmp/user/1000/testo9vsdjo3/node1/regtest/bitcoind.pid
Then you can use the pid to start gdb
:
gdb /home/example/bitcoind <pid>
Note: gdb attach step may require ptrace_scope to be modified, or sudo
preceding the gdb
.
See this link for considerations: https://www.kernel.org/doc/Documentation/security/Yama.txt
Often while debugging rpc calls from functional tests, the test might reach timeout before
process can return a response. Use --timeout-factor 0
to disable all rpc timeouts for that partcular
functional test. Ex: test/functional/wallet_hd.py --timeout-factor 0
.
Profiling
An easy way to profile node performance during functional tests is provided
for Linux platforms using perf
.
Perf will sample the running node and will generate profile data in the node's
datadir. The profile data can then be presented using perf report
or a graphical
tool like hotspot.
To generate a profile during test suite runs, use the --perf
flag.
To see render the output to text, run
perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less
For ways to generate more granular profiles, see the README in test/functional.
Util tests
Util tests can be run locally by running test/util/bitcoin-util-test.py
.
Use the -v
option for verbose output.
Lint tests
Dependencies
Lint test | Dependency | Version used by CI | Installation |
---|---|---|---|
lint-python.sh |
flake8 | 3.8.3 | pip3 install flake8==3.8.3 |
lint-python.sh |
mypy | 0.781 | pip3 install mypy==0.781 |
lint-shell.sh |
ShellCheck | 0.7.1 | details... |
lint-shell.sh |
yq | default | pip3 install yq |
lint-spelling.sh |
codespell | 2.0.0 | pip3 install codespell==2.0.0 |
Please be aware that on Linux distributions all dependencies are usually available as packages, but could be outdated.
Running the tests
Individual tests can be run by directly calling the test script, e.g.:
test/lint/lint-filenames.sh
You can run all the shell-based lint tests by running:
test/lint/lint-all.sh
Writing functional tests
You are encouraged to write functional tests for new or existing features. Further information about the functional test framework and individual tests is found in test/functional.