bitcoin/src/scalar_impl.h
Pieter Wuille ecae2acb06 Squashed 'src/secp256k1/' changes from b0210a9..bccaf86
bccaf86 Merge pull request #150
2a53a47 Merge pull request #151
5f5a31f Merge pull request #149
3907277 Merge pull request #142
a3e0611 Enable tests in x86 travis builds
45da235 x86 builder
8bb0e93 Merge pull request #155
971fe81 build: fix openssl detection for cross builds
f22d73e Explicitly access %0..%2 as 64-bit so we use the right registers for x32 ABI
e66d4d6 Avoid the stack in assembly and use explicit registers
cf7b2b4 Fix ECDSA message hashes to 32 bytes
056ad31 Really compile with -O3 by default
74ad63a Merge pull request #146
9000458 Merge pull request #145
1f46b00 build: fix __builtin_expect detection for clang
aaba2e0 Merge pull request #136
8a0775c Merge pull request #144
ee1eaa7 Merge pull request #141
c88e2b8 Compile with -O3 by default
6558a26 Make the benchmarks print out stats
000bdf6 Rename bench_verify to bench_recovery
7c6fed2 Add a few more additional tests.
992e03b travis: add clang to the test matrix
b43b79a Merge pull request #143
e06a924 Include time.h header for time().
8d11164 Add some additional tests.
3545627 Merge pull request #118
6a9901e Merge pull request #137
376b28b Merge pull request #128
1728806 Merge pull request #138
a5759c5 Check return value of malloc
39bd94d Variable time normalize
ad86bdf Merge pull request #140
54b768c Another redundant secp256k1_fe_normalize
69dcaab Merge pull request #139
1c29f2e Remove redundant secp256k1_fe_normalize from secp256k1_gej_add_ge_var.
2b9388b Remove unused secp256k1_fe_inv_all
f461b76 Allocate precomputation arrays on the heap
b2c9681 Make {mul,sqr}_inner use the same argument order as {mul,sqr}
6793505 Convert YASM code into inline assembly
f048615 Rewrite field assembly to match the C version
3ce74b1 Tweak precomputed table size for G

git-subtree-dir: src/secp256k1
git-subtree-split: bccaf86caa9c44166e5a66600b742c516e03c3f0
2014-12-11 01:58:25 +01:00

337 lines
13 KiB
C

/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_SCALAR_IMPL_H_
#define _SECP256K1_SCALAR_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(USE_SCALAR_4X64)
#include "scalar_4x64_impl.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32_impl.h"
#else
#error "Please select scalar implementation"
#endif
typedef struct {
#ifndef USE_NUM_NONE
secp256k1_num_t order;
#endif
#ifdef USE_ENDOMORPHISM
secp256k1_scalar_t minus_lambda, minus_b1, minus_b2, g1, g2;
#endif
} secp256k1_scalar_consts_t;
static const secp256k1_scalar_consts_t *secp256k1_scalar_consts = NULL;
static void secp256k1_scalar_start(void) {
if (secp256k1_scalar_consts != NULL)
return;
/* Allocate. */
secp256k1_scalar_consts_t *ret = (secp256k1_scalar_consts_t*)checked_malloc(sizeof(secp256k1_scalar_consts_t));
#ifndef USE_NUM_NONE
static const unsigned char secp256k1_scalar_consts_order[] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
};
secp256k1_num_set_bin(&ret->order, secp256k1_scalar_consts_order, sizeof(secp256k1_scalar_consts_order));
#endif
#ifdef USE_ENDOMORPHISM
/**
* Lambda is a scalar which has the property for secp256k1 that point multiplication by
* it is efficiently computable (see secp256k1_gej_mul_lambda). */
static const unsigned char secp256k1_scalar_consts_lambda[32] = {
0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,
0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,
0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72
};
/**
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
* and k2 have a small size.
* It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
*
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
*
* The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
* compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
*
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
* when decomposing the scalar for an endomorphism-based point multiplication.
*
* The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
* Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
*
* The derivation is described in the paper "Efficient Software Implementation of Public-Key
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
* Section 4.3 (here we use a somewhat higher-precision estimate):
* d = a1*b2 - b1*a2
* g1 = round((2^272)*b2/d)
* g2 = round((2^272)*b1/d)
*
* (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
* as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
*/
static const unsigned char secp256k1_scalar_consts_minus_b1[32] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,
0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3
};
static const unsigned char secp256k1_scalar_consts_b2[32] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,
0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15
};
static const unsigned char secp256k1_scalar_consts_g1[32] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x86,
0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,
0x90,0xe4,0x92,0x84,0xeb,0x15,0x3d,0xab
};
static const unsigned char secp256k1_scalar_consts_g2[32] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0xe4,0x43,
0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,
0x7f,0xa9,0x0a,0xbf,0xe4,0xc4,0x22,0x12
};
secp256k1_scalar_set_b32(&ret->minus_lambda, secp256k1_scalar_consts_lambda, NULL);
secp256k1_scalar_negate(&ret->minus_lambda, &ret->minus_lambda);
secp256k1_scalar_set_b32(&ret->minus_b1, secp256k1_scalar_consts_minus_b1, NULL);
secp256k1_scalar_set_b32(&ret->minus_b2, secp256k1_scalar_consts_b2, NULL);
secp256k1_scalar_negate(&ret->minus_b2, &ret->minus_b2);
secp256k1_scalar_set_b32(&ret->g1, secp256k1_scalar_consts_g1, NULL);
secp256k1_scalar_set_b32(&ret->g2, secp256k1_scalar_consts_g2, NULL);
#endif
/* Set the global pointer. */
secp256k1_scalar_consts = ret;
}
static void secp256k1_scalar_stop(void) {
if (secp256k1_scalar_consts == NULL)
return;
secp256k1_scalar_consts_t *c = (secp256k1_scalar_consts_t*)secp256k1_scalar_consts;
secp256k1_scalar_consts = NULL;
free(c);
}
#ifndef USE_NUM_NONE
static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) {
unsigned char c[32];
secp256k1_scalar_get_b32(c, a);
secp256k1_num_set_bin(r, c, 32);
}
static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
*r = secp256k1_scalar_consts->order;
}
#endif
static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
/* First compute x ^ (2^N - 1) for some values of N. */
secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
secp256k1_scalar_sqr(&x2, x);
secp256k1_scalar_mul(&x2, &x2, x);
secp256k1_scalar_sqr(&x3, &x2);
secp256k1_scalar_mul(&x3, &x3, x);
secp256k1_scalar_sqr(&x4, &x3);
secp256k1_scalar_mul(&x4, &x4, x);
secp256k1_scalar_sqr(&x6, &x4);
secp256k1_scalar_sqr(&x6, &x6);
secp256k1_scalar_mul(&x6, &x6, &x2);
secp256k1_scalar_sqr(&x7, &x6);
secp256k1_scalar_mul(&x7, &x7, x);
secp256k1_scalar_sqr(&x8, &x7);
secp256k1_scalar_mul(&x8, &x8, x);
secp256k1_scalar_sqr(&x15, &x8);
for (int i=0; i<6; i++)
secp256k1_scalar_sqr(&x15, &x15);
secp256k1_scalar_mul(&x15, &x15, &x7);
secp256k1_scalar_sqr(&x30, &x15);
for (int i=0; i<14; i++)
secp256k1_scalar_sqr(&x30, &x30);
secp256k1_scalar_mul(&x30, &x30, &x15);
secp256k1_scalar_sqr(&x60, &x30);
for (int i=0; i<29; i++)
secp256k1_scalar_sqr(&x60, &x60);
secp256k1_scalar_mul(&x60, &x60, &x30);
secp256k1_scalar_sqr(&x120, &x60);
for (int i=0; i<59; i++)
secp256k1_scalar_sqr(&x120, &x120);
secp256k1_scalar_mul(&x120, &x120, &x60);
secp256k1_scalar_sqr(&x127, &x120);
for (int i=0; i<6; i++)
secp256k1_scalar_sqr(&x127, &x127);
secp256k1_scalar_mul(&x127, &x127, &x7);
/* Then accumulate the final result (t starts at x127). */
secp256k1_scalar_t *t = &x127;
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<3; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<5; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<4; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<5; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x4); /* 1111 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<4; i++) /* 000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<10; i++) /* 0000000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<4; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (int i=0; i<9; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<5; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x4); /* 1111 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<5; i++) /* 000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<4; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<2; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<8; i++) /* 000000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<3; i++) /* 0 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (int i=0; i<3; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<6; i++) /* 00000 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(t, t, x); /* 1 */
for (int i=0; i<8; i++) /* 00 */
secp256k1_scalar_sqr(t, t);
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
unsigned char b[32];
secp256k1_scalar_get_b32(b, x);
secp256k1_num_t n;
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_mod_inverse(&n, &n, &secp256k1_scalar_consts->order);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_scalar_set_b32(r, b, NULL);
#else
#error "Please select scalar inverse implementation"
#endif
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
VERIFY_CHECK(r1 != a);
VERIFY_CHECK(r2 != a);
secp256k1_scalar_t c1, c2;
secp256k1_scalar_mul_shift_var(&c1, a, &secp256k1_scalar_consts->g1, 272);
secp256k1_scalar_mul_shift_var(&c2, a, &secp256k1_scalar_consts->g2, 272);
secp256k1_scalar_mul(&c1, &c1, &secp256k1_scalar_consts->minus_b1);
secp256k1_scalar_mul(&c2, &c2, &secp256k1_scalar_consts->minus_b2);
secp256k1_scalar_add(r2, &c1, &c2);
secp256k1_scalar_mul(r1, r2, &secp256k1_scalar_consts->minus_lambda);
secp256k1_scalar_add(r1, r1, a);
}
#endif
#endif