Files
bitcoin/src/policy/policy.cpp
Antoine Poinsot 204b965915 policy: make pathological transactions packed with legacy sigops non-standard.
The Consensus Cleanup soft fork proposal includes a limit on the number of legacy signature
operations potentially executed when validating a transaction. If this change is to be implemented
here and activated by Bitcoin users in the future, we should prevent the ability for someone to
broadcast a transaction through the p2p network that is not valid according to the new rules. This
is because if it was possible it would be a trivial DoS to potentially unupgraded miners after the
soft fork activates.

We do not know for sure whether users will activate the Consensus Cleanup. However if they do such
transactions must have been made non-standard long in advance, due to the time it takes for most
nodes on the network to upgrade. In addition this limit may only be run into by pathological
transactions which pad the Script with sigops but do not use actual signatures when spending, as
otherwise they would run into the standard transaction size limit.

Github-Pull: bitcoin/bitcoin#32521
Rebased-From: 5863315e33
2025-07-18 16:51:53 -04:00

361 lines
14 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// NOTE: This file is intended to be customised by the end user, and includes only local node policy logic
#include <policy/policy.h>
#include <coins.h>
#include <consensus/amount.h>
#include <consensus/consensus.h>
#include <consensus/validation.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <script/interpreter.h>
#include <script/script.h>
#include <script/solver.h>
#include <serialize.h>
#include <span.h>
#include <algorithm>
#include <cstddef>
#include <vector>
CAmount GetDustThreshold(const CTxOut& txout, const CFeeRate& dustRelayFeeIn)
{
// "Dust" is defined in terms of dustRelayFee,
// which has units satoshis-per-kilobyte.
// If you'd pay more in fees than the value of the output
// to spend something, then we consider it dust.
// A typical spendable non-segwit txout is 34 bytes big, and will
// need a CTxIn of at least 148 bytes to spend:
// so dust is a spendable txout less than
// 182*dustRelayFee/1000 (in satoshis).
// 546 satoshis at the default rate of 3000 sat/kvB.
// A typical spendable segwit P2WPKH txout is 31 bytes big, and will
// need a CTxIn of at least 67 bytes to spend:
// so dust is a spendable txout less than
// 98*dustRelayFee/1000 (in satoshis).
// 294 satoshis at the default rate of 3000 sat/kvB.
if (txout.scriptPubKey.IsUnspendable())
return 0;
size_t nSize = GetSerializeSize(txout);
int witnessversion = 0;
std::vector<unsigned char> witnessprogram;
// Note this computation is for spending a Segwit v0 P2WPKH output (a 33 bytes
// public key + an ECDSA signature). For Segwit v1 Taproot outputs the minimum
// satisfaction is lower (a single BIP340 signature) but this computation was
// kept to not further reduce the dust level.
// See discussion in https://github.com/bitcoin/bitcoin/pull/22779 for details.
if (txout.scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
// sum the sizes of the parts of a transaction input
// with 75% segwit discount applied to the script size.
nSize += (32 + 4 + 1 + (107 / WITNESS_SCALE_FACTOR) + 4);
} else {
nSize += (32 + 4 + 1 + 107 + 4); // the 148 mentioned above
}
return dustRelayFeeIn.GetFee(nSize);
}
bool IsDust(const CTxOut& txout, const CFeeRate& dustRelayFeeIn)
{
return (txout.nValue < GetDustThreshold(txout, dustRelayFeeIn));
}
std::vector<uint32_t> GetDust(const CTransaction& tx, CFeeRate dust_relay_rate)
{
std::vector<uint32_t> dust_outputs;
for (uint32_t i{0}; i < tx.vout.size(); ++i) {
if (IsDust(tx.vout[i], dust_relay_rate)) dust_outputs.push_back(i);
}
return dust_outputs;
}
bool IsStandard(const CScript& scriptPubKey, const std::optional<unsigned>& max_datacarrier_bytes, TxoutType& whichType)
{
std::vector<std::vector<unsigned char> > vSolutions;
whichType = Solver(scriptPubKey, vSolutions);
if (whichType == TxoutType::NONSTANDARD) {
return false;
} else if (whichType == TxoutType::MULTISIG) {
unsigned char m = vSolutions.front()[0];
unsigned char n = vSolutions.back()[0];
// Support up to x-of-3 multisig txns as standard
if (n < 1 || n > 3)
return false;
if (m < 1 || m > n)
return false;
} else if (whichType == TxoutType::NULL_DATA) {
if (!max_datacarrier_bytes || scriptPubKey.size() > *max_datacarrier_bytes) {
return false;
}
}
return true;
}
bool IsStandardTx(const CTransaction& tx, const std::optional<unsigned>& max_datacarrier_bytes, bool permit_bare_multisig, const CFeeRate& dust_relay_fee, std::string& reason)
{
if (tx.version > TX_MAX_STANDARD_VERSION || tx.version < 1) {
reason = "version";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_WEIGHT mitigates CPU exhaustion attacks.
unsigned int sz = GetTransactionWeight(tx);
if (sz > MAX_STANDARD_TX_WEIGHT) {
reason = "tx-size";
return false;
}
for (const CTxIn& txin : tx.vin)
{
// Biggest 'standard' txin involving only keys is a 15-of-15 P2SH
// multisig with compressed keys (remember the MAX_SCRIPT_ELEMENT_SIZE byte limit on
// redeemScript size). That works out to a (15*(33+1))+3=513 byte
// redeemScript, 513+1+15*(73+1)+3=1627 bytes of scriptSig, which
// we round off to 1650(MAX_STANDARD_SCRIPTSIG_SIZE) bytes for
// some minor future-proofing. That's also enough to spend a
// 20-of-20 CHECKMULTISIG scriptPubKey, though such a scriptPubKey
// is not considered standard.
if (txin.scriptSig.size() > MAX_STANDARD_SCRIPTSIG_SIZE) {
reason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
reason = "scriptsig-not-pushonly";
return false;
}
}
unsigned int nDataOut = 0;
TxoutType whichType;
for (const CTxOut& txout : tx.vout) {
if (!::IsStandard(txout.scriptPubKey, max_datacarrier_bytes, whichType)) {
reason = "scriptpubkey";
return false;
}
if (whichType == TxoutType::NULL_DATA)
nDataOut++;
else if ((whichType == TxoutType::MULTISIG) && (!permit_bare_multisig)) {
reason = "bare-multisig";
return false;
}
}
// Only MAX_DUST_OUTPUTS_PER_TX dust is permitted(on otherwise valid ephemeral dust)
if (GetDust(tx, dust_relay_fee).size() > MAX_DUST_OUTPUTS_PER_TX) {
reason = "dust";
return false;
}
// only one OP_RETURN txout is permitted
if (nDataOut > 1) {
reason = "multi-op-return";
return false;
}
return true;
}
/**
* Check the total number of non-witness sigops across the whole transaction, as per BIP54.
*/
static bool CheckSigopsBIP54(const CTransaction& tx, const CCoinsViewCache& inputs)
{
Assert(!tx.IsCoinBase());
unsigned int sigops{0};
for (const auto& txin: tx.vin) {
const auto& prev_txo{inputs.AccessCoin(txin.prevout).out};
// Unlike the existing block wide sigop limit which counts sigops present in the block
// itself (including the scriptPubKey which is not executed until spending later), BIP54
// counts sigops in the block where they are potentially executed (only).
// This means sigops in the spent scriptPubKey count toward the limit.
// `fAccurate` means correctly accounting sigops for CHECKMULTISIGs(VERIFY) with 16 pubkeys
// or fewer. This method of accounting was introduced by BIP16, and BIP54 reuses it.
// The GetSigOpCount call on the previous scriptPubKey counts both bare and P2SH sigops.
sigops += txin.scriptSig.GetSigOpCount(/*fAccurate=*/true);
sigops += prev_txo.scriptPubKey.GetSigOpCount(txin.scriptSig);
if (sigops > MAX_TX_LEGACY_SIGOPS) {
return false;
}
}
return true;
}
/**
* Check transaction inputs to mitigate two
* potential denial-of-service attacks:
*
* 1. scriptSigs with extra data stuffed into them,
* not consumed by scriptPubKey (or P2SH script)
* 2. P2SH scripts with a crazy number of expensive
* CHECKSIG/CHECKMULTISIG operations
*
* Why bother? To avoid denial-of-service attacks; an attacker
* can submit a standard HASH... OP_EQUAL transaction,
* which will get accepted into blocks. The redemption
* script can be anything; an attacker could use a very
* expensive-to-check-upon-redemption script like:
* DUP CHECKSIG DROP ... repeated 100 times... OP_1
*
* Note that only the non-witness portion of the transaction is checked here.
*
* We also check the total number of non-witness sigops across the whole transaction, as per BIP54.
*/
bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs)
{
if (tx.IsCoinBase()) {
return true; // Coinbases don't use vin normally
}
if (!CheckSigopsBIP54(tx, mapInputs)) {
return false;
}
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const CTxOut& prev = mapInputs.AccessCoin(tx.vin[i].prevout).out;
std::vector<std::vector<unsigned char> > vSolutions;
TxoutType whichType = Solver(prev.scriptPubKey, vSolutions);
if (whichType == TxoutType::NONSTANDARD || whichType == TxoutType::WITNESS_UNKNOWN) {
// WITNESS_UNKNOWN failures are typically also caught with a policy
// flag in the script interpreter, but it can be helpful to catch
// this type of NONSTANDARD transaction earlier in transaction
// validation.
return false;
} else if (whichType == TxoutType::SCRIPTHASH) {
std::vector<std::vector<unsigned char> > stack;
// convert the scriptSig into a stack, so we can inspect the redeemScript
if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE))
return false;
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
if (subscript.GetSigOpCount(true) > MAX_P2SH_SIGOPS) {
return false;
}
}
}
return true;
}
bool IsWitnessStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs)
{
if (tx.IsCoinBase())
return true; // Coinbases are skipped
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
// We don't care if witness for this input is empty, since it must not be bloated.
// If the script is invalid without witness, it would be caught sooner or later during validation.
if (tx.vin[i].scriptWitness.IsNull())
continue;
const CTxOut &prev = mapInputs.AccessCoin(tx.vin[i].prevout).out;
// get the scriptPubKey corresponding to this input:
CScript prevScript = prev.scriptPubKey;
// witness stuffing detected
if (prevScript.IsPayToAnchor()) {
return false;
}
bool p2sh = false;
if (prevScript.IsPayToScriptHash()) {
std::vector <std::vector<unsigned char> > stack;
// If the scriptPubKey is P2SH, we try to extract the redeemScript casually by converting the scriptSig
// into a stack. We do not check IsPushOnly nor compare the hash as these will be done later anyway.
// If the check fails at this stage, we know that this txid must be a bad one.
if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE))
return false;
if (stack.empty())
return false;
prevScript = CScript(stack.back().begin(), stack.back().end());
p2sh = true;
}
int witnessversion = 0;
std::vector<unsigned char> witnessprogram;
// Non-witness program must not be associated with any witness
if (!prevScript.IsWitnessProgram(witnessversion, witnessprogram))
return false;
// Check P2WSH standard limits
if (witnessversion == 0 && witnessprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE) {
if (tx.vin[i].scriptWitness.stack.back().size() > MAX_STANDARD_P2WSH_SCRIPT_SIZE)
return false;
size_t sizeWitnessStack = tx.vin[i].scriptWitness.stack.size() - 1;
if (sizeWitnessStack > MAX_STANDARD_P2WSH_STACK_ITEMS)
return false;
for (unsigned int j = 0; j < sizeWitnessStack; j++) {
if (tx.vin[i].scriptWitness.stack[j].size() > MAX_STANDARD_P2WSH_STACK_ITEM_SIZE)
return false;
}
}
// Check policy limits for Taproot spends:
// - MAX_STANDARD_TAPSCRIPT_STACK_ITEM_SIZE limit for stack item size
// - No annexes
if (witnessversion == 1 && witnessprogram.size() == WITNESS_V1_TAPROOT_SIZE && !p2sh) {
// Taproot spend (non-P2SH-wrapped, version 1, witness program size 32; see BIP 341)
Span stack{tx.vin[i].scriptWitness.stack};
if (stack.size() >= 2 && !stack.back().empty() && stack.back()[0] == ANNEX_TAG) {
// Annexes are nonstandard as long as no semantics are defined for them.
return false;
}
if (stack.size() >= 2) {
// Script path spend (2 or more stack elements after removing optional annex)
const auto& control_block = SpanPopBack(stack);
SpanPopBack(stack); // Ignore script
if (control_block.empty()) return false; // Empty control block is invalid
if ((control_block[0] & TAPROOT_LEAF_MASK) == TAPROOT_LEAF_TAPSCRIPT) {
// Leaf version 0xc0 (aka Tapscript, see BIP 342)
for (const auto& item : stack) {
if (item.size() > MAX_STANDARD_TAPSCRIPT_STACK_ITEM_SIZE) return false;
}
}
} else if (stack.size() == 1) {
// Key path spend (1 stack element after removing optional annex)
// (no policy rules apply)
} else {
// 0 stack elements; this is already invalid by consensus rules
return false;
}
}
}
return true;
}
int64_t GetVirtualTransactionSize(int64_t nWeight, int64_t nSigOpCost, unsigned int bytes_per_sigop)
{
return (std::max(nWeight, nSigOpCost * bytes_per_sigop) + WITNESS_SCALE_FACTOR - 1) / WITNESS_SCALE_FACTOR;
}
int64_t GetVirtualTransactionSize(const CTransaction& tx, int64_t nSigOpCost, unsigned int bytes_per_sigop)
{
return GetVirtualTransactionSize(GetTransactionWeight(tx), nSigOpCost, bytes_per_sigop);
}
int64_t GetVirtualTransactionInputSize(const CTxIn& txin, int64_t nSigOpCost, unsigned int bytes_per_sigop)
{
return GetVirtualTransactionSize(GetTransactionInputWeight(txin), nSigOpCost, bytes_per_sigop);
}