Files
bitcoin/src/test/validation_block_tests.cpp
Ryan Ofsky 4dfe383912 refactor: Convert ChainstateRole enum to struct
Change ChainstateRole parameter passed to wallets and indexes. Wallets and
indexes need to know whether chainstate is historical and whether it is fully
validated. They should not be aware of the assumeutxo snapshot validation
process.
2025-12-12 06:49:59 -04:00

369 lines
15 KiB
C++

// Copyright (c) 2018-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <boost/test/unit_test.hpp>
#include <chainparams.h>
#include <consensus/merkle.h>
#include <consensus/validation.h>
#include <node/miner.h>
#include <pow.h>
#include <random.h>
#include <test/util/random.h>
#include <test/util/script.h>
#include <test/util/setup_common.h>
#include <util/time.h>
#include <validation.h>
#include <validationinterface.h>
#include <thread>
using kernel::ChainstateRole;
using node::BlockAssembler;
namespace validation_block_tests {
struct MinerTestingSetup : public RegTestingSetup {
std::shared_ptr<CBlock> Block(const uint256& prev_hash);
std::shared_ptr<const CBlock> GoodBlock(const uint256& prev_hash);
std::shared_ptr<const CBlock> BadBlock(const uint256& prev_hash);
std::shared_ptr<CBlock> FinalizeBlock(std::shared_ptr<CBlock> pblock);
void BuildChain(const uint256& root, int height, const unsigned int invalid_rate, const unsigned int branch_rate, const unsigned int max_size, std::vector<std::shared_ptr<const CBlock>>& blocks);
};
} // namespace validation_block_tests
BOOST_FIXTURE_TEST_SUITE(validation_block_tests, MinerTestingSetup)
struct TestSubscriber final : public CValidationInterface {
uint256 m_expected_tip;
explicit TestSubscriber(uint256 tip) : m_expected_tip(tip) {}
void UpdatedBlockTip(const CBlockIndex* pindexNew, const CBlockIndex* pindexFork, bool fInitialDownload) override
{
BOOST_CHECK_EQUAL(m_expected_tip, pindexNew->GetBlockHash());
}
void BlockConnected(const ChainstateRole& role, const std::shared_ptr<const CBlock>& block, const CBlockIndex* pindex) override
{
BOOST_CHECK_EQUAL(m_expected_tip, block->hashPrevBlock);
BOOST_CHECK_EQUAL(m_expected_tip, pindex->pprev->GetBlockHash());
m_expected_tip = block->GetHash();
}
void BlockDisconnected(const std::shared_ptr<const CBlock>& block, const CBlockIndex* pindex) override
{
BOOST_CHECK_EQUAL(m_expected_tip, block->GetHash());
BOOST_CHECK_EQUAL(m_expected_tip, pindex->GetBlockHash());
m_expected_tip = block->hashPrevBlock;
}
};
std::shared_ptr<CBlock> MinerTestingSetup::Block(const uint256& prev_hash)
{
static int i = 0;
static uint64_t time = Params().GenesisBlock().nTime;
BlockAssembler::Options options;
options.coinbase_output_script = CScript{} << i++ << OP_TRUE;
auto ptemplate = BlockAssembler{m_node.chainman->ActiveChainstate(), m_node.mempool.get(), options}.CreateNewBlock();
auto pblock = std::make_shared<CBlock>(ptemplate->block);
pblock->hashPrevBlock = prev_hash;
pblock->nTime = ++time;
// Make the coinbase transaction with two outputs:
// One zero-value one that has a unique pubkey to make sure that blocks at the same height can have a different hash
// Another one that has the coinbase reward in a P2WSH with OP_TRUE as witness program to make it easy to spend
CMutableTransaction txCoinbase(*pblock->vtx[0]);
txCoinbase.vout.resize(2);
txCoinbase.vout[1].scriptPubKey = P2WSH_OP_TRUE;
txCoinbase.vout[1].nValue = txCoinbase.vout[0].nValue;
txCoinbase.vout[0].nValue = 0;
txCoinbase.vin[0].scriptWitness.SetNull();
// Always pad with OP_0 at the end to avoid bad-cb-length error
const int prev_height{WITH_LOCK(::cs_main, return m_node.chainman->m_blockman.LookupBlockIndex(prev_hash)->nHeight)};
txCoinbase.vin[0].scriptSig = CScript{} << prev_height + 1 << OP_0;
txCoinbase.nLockTime = static_cast<uint32_t>(prev_height);
pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase));
return pblock;
}
std::shared_ptr<CBlock> MinerTestingSetup::FinalizeBlock(std::shared_ptr<CBlock> pblock)
{
const CBlockIndex* prev_block{WITH_LOCK(::cs_main, return m_node.chainman->m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
m_node.chainman->GenerateCoinbaseCommitment(*pblock, prev_block);
pblock->hashMerkleRoot = BlockMerkleRoot(*pblock);
while (!CheckProofOfWork(pblock->GetHash(), pblock->nBits, Params().GetConsensus())) {
++(pblock->nNonce);
}
// submit block header, so that miner can get the block height from the
// global state and the node has the topology of the chain
BlockValidationState ignored;
BOOST_CHECK(Assert(m_node.chainman)->ProcessNewBlockHeaders({{pblock->GetBlockHeader()}}, true, ignored));
return pblock;
}
// construct a valid block
std::shared_ptr<const CBlock> MinerTestingSetup::GoodBlock(const uint256& prev_hash)
{
return FinalizeBlock(Block(prev_hash));
}
// construct an invalid block (but with a valid header)
std::shared_ptr<const CBlock> MinerTestingSetup::BadBlock(const uint256& prev_hash)
{
auto pblock = Block(prev_hash);
CMutableTransaction coinbase_spend;
coinbase_spend.vin.emplace_back(COutPoint(pblock->vtx[0]->GetHash(), 0), CScript(), 0);
coinbase_spend.vout.push_back(pblock->vtx[0]->vout[0]);
CTransactionRef tx = MakeTransactionRef(coinbase_spend);
pblock->vtx.push_back(tx);
auto ret = FinalizeBlock(pblock);
return ret;
}
// NOLINTNEXTLINE(misc-no-recursion)
void MinerTestingSetup::BuildChain(const uint256& root, int height, const unsigned int invalid_rate, const unsigned int branch_rate, const unsigned int max_size, std::vector<std::shared_ptr<const CBlock>>& blocks)
{
if (height <= 0 || blocks.size() >= max_size) return;
bool gen_invalid = m_rng.randrange(100U) < invalid_rate;
bool gen_fork = m_rng.randrange(100U) < branch_rate;
const std::shared_ptr<const CBlock> pblock = gen_invalid ? BadBlock(root) : GoodBlock(root);
blocks.push_back(pblock);
if (!gen_invalid) {
BuildChain(pblock->GetHash(), height - 1, invalid_rate, branch_rate, max_size, blocks);
}
if (gen_fork) {
blocks.push_back(GoodBlock(root));
BuildChain(blocks.back()->GetHash(), height - 1, invalid_rate, branch_rate, max_size, blocks);
}
}
BOOST_AUTO_TEST_CASE(processnewblock_signals_ordering)
{
// build a large-ish chain that's likely to have some forks
std::vector<std::shared_ptr<const CBlock>> blocks;
while (blocks.size() < 50) {
blocks.clear();
BuildChain(Params().GenesisBlock().GetHash(), 100, 15, 10, 500, blocks);
}
bool ignored;
// Connect the genesis block and drain any outstanding events
BOOST_CHECK(Assert(m_node.chainman)->ProcessNewBlock(std::make_shared<CBlock>(Params().GenesisBlock()), true, true, &ignored));
m_node.validation_signals->SyncWithValidationInterfaceQueue();
// subscribe to events (this subscriber will validate event ordering)
const CBlockIndex* initial_tip = nullptr;
{
LOCK(cs_main);
initial_tip = m_node.chainman->ActiveChain().Tip();
}
auto sub = std::make_shared<TestSubscriber>(initial_tip->GetBlockHash());
m_node.validation_signals->RegisterSharedValidationInterface(sub);
// create a bunch of threads that repeatedly process a block generated above at random
// this will create parallelism and randomness inside validation - the ValidationInterface
// will subscribe to events generated during block validation and assert on ordering invariance
std::vector<std::thread> threads;
threads.reserve(10);
for (int i = 0; i < 10; i++) {
threads.emplace_back([&]() {
bool ignored;
FastRandomContext insecure;
for (int i = 0; i < 1000; i++) {
const auto& block = blocks[insecure.randrange(blocks.size() - 1)];
Assert(m_node.chainman)->ProcessNewBlock(block, true, true, &ignored);
}
// to make sure that eventually we process the full chain - do it here
for (const auto& block : blocks) {
if (block->vtx.size() == 1) {
bool processed = Assert(m_node.chainman)->ProcessNewBlock(block, true, true, &ignored);
assert(processed);
}
}
});
}
for (auto& t : threads) {
t.join();
}
m_node.validation_signals->SyncWithValidationInterfaceQueue();
m_node.validation_signals->UnregisterSharedValidationInterface(sub);
LOCK(cs_main);
BOOST_CHECK_EQUAL(sub->m_expected_tip, m_node.chainman->ActiveChain().Tip()->GetBlockHash());
}
/**
* Test that mempool updates happen atomically with reorgs.
*
* This prevents RPC clients, among others, from retrieving immediately-out-of-date mempool data
* during large reorgs.
*
* The test verifies this by creating a chain of `num_txs` blocks, matures their coinbases, and then
* submits txns spending from their coinbase to the mempool. A fork chain is then processed,
* invalidating the txns and evicting them from the mempool.
*
* We verify that the mempool updates atomically by polling it continuously
* from another thread during the reorg and checking that its size only changes
* once. The size changing exactly once indicates that the polling thread's
* view of the mempool is either consistent with the chain state before reorg,
* or consistent with the chain state after the reorg, and not just consistent
* with some intermediate state during the reorg.
*/
BOOST_AUTO_TEST_CASE(mempool_locks_reorg)
{
bool ignored;
auto ProcessBlock = [&](std::shared_ptr<const CBlock> block) -> bool {
return Assert(m_node.chainman)->ProcessNewBlock(block, /*force_processing=*/true, /*min_pow_checked=*/true, /*new_block=*/&ignored);
};
// Process all mined blocks
BOOST_REQUIRE(ProcessBlock(std::make_shared<CBlock>(Params().GenesisBlock())));
auto last_mined = GoodBlock(Params().GenesisBlock().GetHash());
BOOST_REQUIRE(ProcessBlock(last_mined));
// Run the test multiple times
for (int test_runs = 3; test_runs > 0; --test_runs) {
BOOST_CHECK_EQUAL(last_mined->GetHash(), WITH_LOCK(Assert(m_node.chainman)->GetMutex(), return m_node.chainman->ActiveChain().Tip()->GetBlockHash()));
// Later on split from here
const uint256 split_hash{last_mined->hashPrevBlock};
// Create a bunch of transactions to spend the miner rewards of the
// most recent blocks
std::vector<CTransactionRef> txs;
for (int num_txs = 22; num_txs > 0; --num_txs) {
CMutableTransaction mtx;
mtx.vin.emplace_back(COutPoint{last_mined->vtx[0]->GetHash(), 1}, CScript{});
mtx.vin[0].scriptWitness.stack.push_back(WITNESS_STACK_ELEM_OP_TRUE);
mtx.vout.push_back(last_mined->vtx[0]->vout[1]);
mtx.vout[0].nValue -= 1000;
txs.push_back(MakeTransactionRef(mtx));
last_mined = GoodBlock(last_mined->GetHash());
BOOST_REQUIRE(ProcessBlock(last_mined));
}
// Mature the inputs of the txs
for (int j = COINBASE_MATURITY; j > 0; --j) {
last_mined = GoodBlock(last_mined->GetHash());
BOOST_REQUIRE(ProcessBlock(last_mined));
}
// Mine a reorg (and hold it back) before adding the txs to the mempool
const uint256 tip_init{last_mined->GetHash()};
std::vector<std::shared_ptr<const CBlock>> reorg;
last_mined = GoodBlock(split_hash);
reorg.push_back(last_mined);
for (size_t j = COINBASE_MATURITY + txs.size() + 1; j > 0; --j) {
last_mined = GoodBlock(last_mined->GetHash());
reorg.push_back(last_mined);
}
// Add the txs to the tx pool
{
LOCK(cs_main);
for (const auto& tx : txs) {
const MempoolAcceptResult result = m_node.chainman->ProcessTransaction(tx);
BOOST_REQUIRE(result.m_result_type == MempoolAcceptResult::ResultType::VALID);
}
}
// Check that all txs are in the pool
{
BOOST_CHECK_EQUAL(m_node.mempool->size(), txs.size());
}
// Run a thread that simulates an RPC caller that is polling while
// validation is doing a reorg
std::thread rpc_thread{[&]() {
// This thread is checking that the mempool either contains all of
// the transactions invalidated by the reorg, or none of them, and
// not some intermediate amount.
while (true) {
LOCK(m_node.mempool->cs);
if (m_node.mempool->size() == 0) {
// We are done with the reorg
break;
}
// Internally, we might be in the middle of the reorg, but
// externally the reorg to the most-proof-of-work chain should
// be atomic. So the caller assumes that the returned mempool
// is consistent. That is, it has all txs that were there
// before the reorg.
assert(m_node.mempool->size() == txs.size());
continue;
}
LOCK(cs_main);
// We are done with the reorg, so the tip must have changed
assert(tip_init != m_node.chainman->ActiveChain().Tip()->GetBlockHash());
}};
// Submit the reorg in this thread to invalidate and remove the txs from the tx pool
for (const auto& b : reorg) {
ProcessBlock(b);
}
// Check that the reorg was eventually successful
BOOST_CHECK_EQUAL(last_mined->GetHash(), WITH_LOCK(Assert(m_node.chainman)->GetMutex(), return m_node.chainman->ActiveChain().Tip()->GetBlockHash()));
// We can join the other thread, which returns when the reorg was successful
rpc_thread.join();
}
}
BOOST_AUTO_TEST_CASE(witness_commitment_index)
{
LOCK(Assert(m_node.chainman)->GetMutex());
CScript pubKey;
pubKey << 1 << OP_TRUE;
BlockAssembler::Options options;
options.coinbase_output_script = pubKey;
auto ptemplate = BlockAssembler{m_node.chainman->ActiveChainstate(), m_node.mempool.get(), options}.CreateNewBlock();
CBlock pblock = ptemplate->block;
CTxOut witness;
witness.scriptPubKey.resize(MINIMUM_WITNESS_COMMITMENT);
witness.scriptPubKey[0] = OP_RETURN;
witness.scriptPubKey[1] = 0x24;
witness.scriptPubKey[2] = 0xaa;
witness.scriptPubKey[3] = 0x21;
witness.scriptPubKey[4] = 0xa9;
witness.scriptPubKey[5] = 0xed;
// A witness larger than the minimum size is still valid
CTxOut min_plus_one = witness;
min_plus_one.scriptPubKey.resize(MINIMUM_WITNESS_COMMITMENT + 1);
CTxOut invalid = witness;
invalid.scriptPubKey[0] = OP_VERIFY;
CMutableTransaction txCoinbase(*pblock.vtx[0]);
txCoinbase.vout.resize(4);
txCoinbase.vout[0] = witness;
txCoinbase.vout[1] = witness;
txCoinbase.vout[2] = min_plus_one;
txCoinbase.vout[3] = invalid;
pblock.vtx[0] = MakeTransactionRef(std::move(txCoinbase));
BOOST_CHECK_EQUAL(GetWitnessCommitmentIndex(pblock), 2);
}
BOOST_AUTO_TEST_SUITE_END()