bitcoin/src/util/time.cpp
MarcoFalke fa9c38794e
test: Introduce MockableSteadyClock::mock_time_point and ElapseSteady helper
This refactor clarifies that the MockableSteadyClock::mock_time_point
has millisecond precision by defining a type an using it.

Moreover, a ElapseSteady helper is added which can be re-used easily.
2025-04-09 20:05:17 +02:00

131 lines
4.4 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/time.h>
#include <compat/compat.h>
#include <tinyformat.h>
#include <util/check.h>
#include <util/strencodings.h>
#include <atomic>
#include <chrono>
#include <optional>
#include <string>
#include <string_view>
#include <thread>
void UninterruptibleSleep(const std::chrono::microseconds& n) { std::this_thread::sleep_for(n); }
static std::atomic<std::chrono::seconds> g_mock_time{}; //!< For testing
std::atomic<bool> g_used_system_time{false};
static std::atomic<MockableSteadyClock::mock_time_point::duration> g_mock_steady_time{}; //!< For testing
NodeClock::time_point NodeClock::now() noexcept
{
const auto mocktime{g_mock_time.load(std::memory_order_relaxed)};
if (!mocktime.count()) {
g_used_system_time = true;
}
const auto ret{
mocktime.count() ?
mocktime :
std::chrono::system_clock::now().time_since_epoch()};
assert(ret > 0s);
return time_point{ret};
};
void SetMockTime(int64_t nMockTimeIn) { SetMockTime(std::chrono::seconds{nMockTimeIn}); }
void SetMockTime(std::chrono::seconds mock_time_in)
{
Assert(mock_time_in >= 0s);
g_mock_time.store(mock_time_in, std::memory_order_relaxed);
}
std::chrono::seconds GetMockTime()
{
return g_mock_time.load(std::memory_order_relaxed);
}
MockableSteadyClock::time_point MockableSteadyClock::now() noexcept
{
const auto mocktime{g_mock_steady_time.load(std::memory_order_relaxed)};
if (!mocktime.count()) {
g_used_system_time = true;
}
const auto ret{
mocktime.count() ?
mocktime :
std::chrono::steady_clock::now().time_since_epoch()};
return time_point{ret};
};
void MockableSteadyClock::SetMockTime(mock_time_point::duration mock_time_in)
{
Assert(mock_time_in >= 0s);
g_mock_steady_time.store(mock_time_in, std::memory_order_relaxed);
}
void MockableSteadyClock::ClearMockTime()
{
g_mock_steady_time.store(0ms, std::memory_order_relaxed);
}
int64_t GetTime() { return GetTime<std::chrono::seconds>().count(); }
std::string FormatISO8601DateTime(int64_t nTime)
{
const std::chrono::sys_seconds secs{std::chrono::seconds{nTime}};
const auto days{std::chrono::floor<std::chrono::days>(secs)};
const std::chrono::year_month_day ymd{days};
const std::chrono::hh_mm_ss hms{secs - days};
return strprintf("%04i-%02u-%02uT%02i:%02i:%02iZ", signed{ymd.year()}, unsigned{ymd.month()}, unsigned{ymd.day()}, hms.hours().count(), hms.minutes().count(), hms.seconds().count());
}
std::string FormatISO8601Date(int64_t nTime)
{
const std::chrono::sys_seconds secs{std::chrono::seconds{nTime}};
const auto days{std::chrono::floor<std::chrono::days>(secs)};
const std::chrono::year_month_day ymd{days};
return strprintf("%04i-%02u-%02u", signed{ymd.year()}, unsigned{ymd.month()}, unsigned{ymd.day()});
}
std::optional<int64_t> ParseISO8601DateTime(std::string_view str)
{
constexpr auto FMT_SIZE{std::string_view{"2000-01-01T01:01:01Z"}.size()};
if (str.size() != FMT_SIZE || str[4] != '-' || str[7] != '-' || str[10] != 'T' || str[13] != ':' || str[16] != ':' || str[19] != 'Z') {
return {};
}
const auto year{ToIntegral<uint16_t>(str.substr(0, 4))};
const auto month{ToIntegral<uint8_t>(str.substr(5, 2))};
const auto day{ToIntegral<uint8_t>(str.substr(8, 2))};
const auto hour{ToIntegral<uint8_t>(str.substr(11, 2))};
const auto min{ToIntegral<uint8_t>(str.substr(14, 2))};
const auto sec{ToIntegral<uint8_t>(str.substr(17, 2))};
if (!year || !month || !day || !hour || !min || !sec) {
return {};
}
const std::chrono::year_month_day ymd{std::chrono::year{*year}, std::chrono::month{*month}, std::chrono::day{*day}};
if (!ymd.ok()) {
return {};
}
const auto time{std::chrono::hours{*hour} + std::chrono::minutes{*min} + std::chrono::seconds{*sec}};
const auto tp{std::chrono::sys_days{ymd} + time};
return int64_t{TicksSinceEpoch<std::chrono::seconds>(tp)};
}
struct timeval MillisToTimeval(int64_t nTimeout)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
return timeout;
}
struct timeval MillisToTimeval(std::chrono::milliseconds ms)
{
return MillisToTimeval(count_milliseconds(ms));
}