bitcoin/src/test/fuzz/rbf.cpp
Greg Sanders 4ccb3d6d0d fuzz: have package_rbf always make small txns
The fuzz target is generating a large amount of
transactions, but the core of the logic is
ConsumeTxMemPoolEntry making the mempool
entries for adding to the mempool. Since
ConsumeTxMemPoolEntry generates its own transaction
"vsize", we can improve efficiency of the target
by explicitly creating very small transactions,
reducing the hashing and memory burden.
2024-06-18 10:19:41 -04:00

211 lines
8.0 KiB
C++

// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/mempool_args.h>
#include <policy/rbf.h>
#include <primitives/transaction.h>
#include <sync.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/fuzz/util/mempool.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <txmempool.h>
#include <util/check.h>
#include <util/translation.h>
#include <cstdint>
#include <optional>
#include <string>
#include <vector>
namespace {
const BasicTestingSetup* g_setup;
} // namespace
const int NUM_ITERS = 10000;
std::vector<COutPoint> g_outpoints;
void initialize_rbf()
{
static const auto testing_setup = MakeNoLogFileContext<>();
g_setup = testing_setup.get();
}
void initialize_package_rbf()
{
static const auto testing_setup = MakeNoLogFileContext<>();
g_setup = testing_setup.get();
// Create a fixed set of unique "UTXOs" to source parents from
// to avoid fuzzer giving circular references
for (int i = 0; i < NUM_ITERS; ++i) {
g_outpoints.emplace_back();
g_outpoints.back().n = i;
}
}
FUZZ_TARGET(rbf, .init = initialize_rbf)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
SetMockTime(ConsumeTime(fuzzed_data_provider));
std::optional<CMutableTransaction> mtx = ConsumeDeserializable<CMutableTransaction>(fuzzed_data_provider, TX_WITH_WITNESS);
if (!mtx) {
return;
}
bilingual_str error;
CTxMemPool pool{MemPoolOptionsForTest(g_setup->m_node), error};
Assert(error.empty());
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), NUM_ITERS)
{
const std::optional<CMutableTransaction> another_mtx = ConsumeDeserializable<CMutableTransaction>(fuzzed_data_provider, TX_WITH_WITNESS);
if (!another_mtx) {
break;
}
const CTransaction another_tx{*another_mtx};
if (fuzzed_data_provider.ConsumeBool() && !mtx->vin.empty()) {
mtx->vin[0].prevout = COutPoint{another_tx.GetHash(), 0};
}
LOCK2(cs_main, pool.cs);
pool.addUnchecked(ConsumeTxMemPoolEntry(fuzzed_data_provider, another_tx));
}
const CTransaction tx{*mtx};
if (fuzzed_data_provider.ConsumeBool()) {
LOCK2(cs_main, pool.cs);
pool.addUnchecked(ConsumeTxMemPoolEntry(fuzzed_data_provider, tx));
}
{
LOCK(pool.cs);
(void)IsRBFOptIn(tx, pool);
}
}
FUZZ_TARGET(package_rbf, .init = initialize_package_rbf)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
SetMockTime(ConsumeTime(fuzzed_data_provider));
// "Real" virtual size is not important for this test since ConsumeTxMemPoolEntry generates its own virtual size values
// so we construct small transactions for performance reasons. Child simply needs an input for later to perhaps connect to parent.
CMutableTransaction child;
child.vin.resize(1);
bilingual_str error;
CTxMemPool pool{MemPoolOptionsForTest(g_setup->m_node), error};
Assert(error.empty());
// Add a bunch of parent-child pairs to the mempool, and remember them.
std::vector<CTransaction> mempool_txs;
size_t iter{0};
int32_t replacement_vsize = fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(1, 1000000);
// Keep track of the total vsize of CTxMemPoolEntry's being added to the mempool to avoid overflow
// Add replacement_vsize since this is added to new diagram during RBF check
int64_t running_vsize_total{replacement_vsize};
LOCK2(cs_main, pool.cs);
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), NUM_ITERS)
{
// Make sure txns only have one input, and that a unique input is given to avoid circular references
CMutableTransaction parent;
assert(iter <= g_outpoints.size());
parent.vin.resize(1);
parent.vin[0].prevout = g_outpoints[iter++];
parent.vout.emplace_back(0, CScript());
mempool_txs.emplace_back(parent);
const auto parent_entry = ConsumeTxMemPoolEntry(fuzzed_data_provider, mempool_txs.back());
running_vsize_total += parent_entry.GetTxSize();
if (running_vsize_total > std::numeric_limits<int32_t>::max()) {
// We aren't adding this final tx to mempool, so we don't want to conflict with it
mempool_txs.pop_back();
break;
}
pool.addUnchecked(parent_entry);
if (fuzzed_data_provider.ConsumeBool()) {
child.vin[0].prevout = COutPoint{mempool_txs.back().GetHash(), 0};
}
mempool_txs.emplace_back(child);
const auto child_entry = ConsumeTxMemPoolEntry(fuzzed_data_provider, mempool_txs.back());
running_vsize_total += child_entry.GetTxSize();
if (running_vsize_total > std::numeric_limits<int32_t>::max()) {
// We aren't adding this final tx to mempool, so we don't want to conflict with it
mempool_txs.pop_back();
break;
}
pool.addUnchecked(child_entry);
if (fuzzed_data_provider.ConsumeBool()) {
pool.PrioritiseTransaction(mempool_txs.back().GetHash().ToUint256(), fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(-100000, 100000));
}
}
// Pick some transactions at random to be the direct conflicts
CTxMemPool::setEntries direct_conflicts;
for (auto& tx : mempool_txs) {
if (fuzzed_data_provider.ConsumeBool()) {
direct_conflicts.insert(*pool.GetIter(tx.GetHash()));
}
}
// Calculate all conflicts:
CTxMemPool::setEntries all_conflicts;
for (auto& txiter : direct_conflicts) {
pool.CalculateDescendants(txiter, all_conflicts);
}
// Calculate the chunks for a replacement.
CAmount replacement_fees = ConsumeMoney(fuzzed_data_provider);
auto calc_results{pool.CalculateChunksForRBF(replacement_fees, replacement_vsize, direct_conflicts, all_conflicts)};
if (calc_results.has_value()) {
// Sanity checks on the chunks.
// Feerates are monotonically decreasing.
FeeFrac first_sum;
for (size_t i = 0; i < calc_results->first.size(); ++i) {
first_sum += calc_results->first[i];
if (i) assert(!(calc_results->first[i - 1] << calc_results->first[i]));
}
FeeFrac second_sum;
for (size_t i = 0; i < calc_results->second.size(); ++i) {
second_sum += calc_results->second[i];
if (i) assert(!(calc_results->second[i - 1] << calc_results->second[i]));
}
FeeFrac replaced;
for (auto txiter : all_conflicts) {
replaced.fee += txiter->GetModifiedFee();
replaced.size += txiter->GetTxSize();
}
// The total fee & size of the new diagram minus replaced fee & size should be the total
// fee & size of the old diagram minus replacement fee & size.
assert((first_sum - replaced) == (second_sum - FeeFrac{replacement_fees, replacement_vsize}));
}
// If internals report error, wrapper should too
auto err_tuple{ImprovesFeerateDiagram(pool, direct_conflicts, all_conflicts, replacement_fees, replacement_vsize)};
if (!calc_results.has_value()) {
assert(err_tuple.value().first == DiagramCheckError::UNCALCULABLE);
} else {
// Diagram check succeeded
auto old_sum = std::accumulate(calc_results->first.begin(), calc_results->first.end(), FeeFrac{});
auto new_sum = std::accumulate(calc_results->second.begin(), calc_results->second.end(), FeeFrac{});
if (!err_tuple.has_value()) {
// New diagram's final fee should always match or exceed old diagram's
assert(old_sum.fee <= new_sum.fee);
} else if (old_sum.fee > new_sum.fee) {
// Or it failed, and if old diagram had higher fees, it should be a failure
assert(err_tuple.value().first == DiagramCheckError::FAILURE);
}
}
}