fanquake d0601e67f1
Merge #17812: config, net, test: asmap feature refinements and functional tests
1ba3e1cc21150abe632a5b82a1a38998b33815dc init: move asmap code earlier in init process (Jon Atack)
5ba829e12e99f119df56cab422f827b9be03fe57 rpc: fix getpeerinfo RPCResult `mapped_as` type (Jon Atack)
c90b9a2399f4cead37bad39f388ce1255e123dc4 net: extract conditional to bool CNetAddr::IsHeNet (Jon Atack)
819fb5549b0d02477f47b3c40338071f37b6d885 logging: asmap logging and #include fixups (Jon Atack)
dcaf543ba0241f9219cea70b67c7b066d4c9ca9b test: add functional test for an empty, unparsable asmap (Jon Atack)
b8d0412b213df18f23bf8677ab94068c6cca9f51 config: separate the asmap finding and parsing checks (Jon Atack)
81c38a24975f34e5894efe3d1aaf45ff6a8cee4a config: enable passing -asmap an absolute file path (Jon Atack)
fbe9b024f01c29153afe494fed74b623ce3ffefa config: use default value in -asmap config (Jon Atack)
08b992675cf8d946db19b7bea747fa1085fdb2a2 test: add feature_asmap functional tests (Jon Atack)

Pull request description:

  This PR builds on PR #16702 to add functional tests / sanity checks and user-facing refinements for passing `-asmap` to configure ASN-based IP bucketing in addrman. As per our review discussion in that PR, the idea here is to handle aspects like functional tests and config arg handling that can help the PR be merged while enabling the author to focus on the bucketing itself.

  - [x] add feature functional tests to verify node behaviour and debug log output when launching

    - `bitcoind` with no `-asmap` arg

    - `bitcoind -asmap=RELATIVE_FILENAME` to the unit test data skeleton asmap

    - `bitcoind -asmap` with no filename specified using the default asmap file

    - `bitcoind -asmap` with no filename specified and a missing default asmap file

  - [x] add the ability to pass absolute path filenames to the `-asmap` config arg in addition to datadir-relative path filenames as per https://github.com/bitcoin/bitcoin/pull/16702#discussion_r361300447, and add test coverage

  - [x] separate the asmap file finding and parsing checks, which allows adding tests for the case of a found but unparseable or empty asmap

  - [x] add test for an empty asmap

  - [x] various asmap fixups

  - [x] move the asmap init code earlier in the init process to provide immediate feedback when passing an  `-asmap` config arg. This speeds up the `feature_asmap` functional test from 60 to 5 seconds! Credit to Wladimir J. van der Laan for the suggestion.

ACKs for top commit:
  practicalswift:
    ACK 1ba3e1cc21150abe632a5b82a1a38998b33815dc -- diff looks correct
  fanquake:
    ACK 1ba3e1cc21150abe632a5b82a1a38998b33815dc

Tree-SHA512: e9094460a597ac5597449acfe631c87b71d3ede6a12c7ae61b26d1161b3eefed8e7e25c4fb0505864cebd89300b7c4cf9378060aa9155441029315df15fa3283
2020-03-05 20:13:33 +08:00
..

Functional tests

Writing Functional Tests

Example test

The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test/functional/test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The Travis linter also checks this, but possibly not in all cases.
  • See the python lint script that checks for violations that could lead to bugs and issues in the test code.
  • Avoid wildcard imports
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramwork, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.
  • Use '{}'.format(x) for string formatting, not '%s' % x.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • tool for tests for tools, eg tool_wallet.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel or on Travis).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to control whether or not to use the cached data directories. The cached data directories contain a 200-block pre-mined blockchain and wallets for four nodes. Each node has 25 mature blocks (25x50=1250 BTC) in its wallet.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
  • Many of the core test framework classes such as CBlock and CTransaction don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • messages.py contains all the definitions for objects that pass over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the bitcoind(s) being tested in a callback-based event loop; the other implements the test logic.

  • P2PConnection is the class used to connect to a bitcoind. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

  • Can be used to write tests where specific P2P protocol behavior is tested. Examples tests are p2p_unrequested_blocks.py, p2p_compactblocks.py.

Prototyping tests

The TestShell class exposes the BitcoinTestFramework functionality to interactive Python3 environments and can be used to prototype tests. This may be especially useful in a REPL environment with session logging utilities, such as IPython. The logs of such interactive sessions can later be adapted into permanent test cases.

Test framework modules

The following are useful modules for test developers. They are located in test/functional/test_framework/.

authproxy.py

Taken from the python-bitcoinrpc repository.

test_framework.py

Base class for functional tests.

util.py

Generally useful functions.

mininode.py

Basic code to support P2P connectivity to a bitcoind.

script.py

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

key.py

Test-only secp256k1 elliptic curve implementation

bignum.py

Helpers for script.py

blocktools.py

Helper functions for creating blocks and transactions.

Benchmarking with perf

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

There are two ways of invoking perf: one is to use the --perf flag when running tests, which will profile each node during the entire test run: perf begins to profile when the node starts and ends when it shuts down. The other way is the use the profile_with_perf context manager, e.g.

with node.profile_with_perf("send-big-msgs"):
    # Perform activity on the node you're interested in profiling, e.g.:
    for _ in range(10000):
        node.p2p.send_message(some_large_message)

To see useful textual output, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

See also: