Files
bitcoin/src/node/miner.cpp
2025-09-24 17:10:51 +02:00

582 lines
24 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/miner.h>
#include <chain.h>
#include <chainparams.h>
#include <coins.h>
#include <common/args.h>
#include <consensus/amount.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <deploymentstatus.h>
#include <logging.h>
#include <node/context.h>
#include <node/kernel_notifications.h>
#include <policy/feerate.h>
#include <policy/policy.h>
#include <pow.h>
#include <primitives/transaction.h>
#include <util/moneystr.h>
#include <util/signalinterrupt.h>
#include <util/time.h>
#include <validation.h>
#include <algorithm>
#include <utility>
namespace node {
int64_t GetMinimumTime(const CBlockIndex* pindexPrev, const int64_t difficulty_adjustment_interval)
{
int64_t min_time{pindexPrev->GetMedianTimePast() + 1};
// Height of block to be mined.
const int height{pindexPrev->nHeight + 1};
// Account for BIP94 timewarp rule on all networks. This makes future
// activation safer.
if (height % difficulty_adjustment_interval == 0) {
min_time = std::max<int64_t>(min_time, pindexPrev->GetBlockTime() - MAX_TIMEWARP);
}
return min_time;
}
int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
int64_t nOldTime = pblock->nTime;
int64_t nNewTime{std::max<int64_t>(GetMinimumTime(pindexPrev, consensusParams.DifficultyAdjustmentInterval()),
TicksSinceEpoch<std::chrono::seconds>(NodeClock::now()))};
if (nOldTime < nNewTime) {
pblock->nTime = nNewTime;
}
// Updating time can change work required on testnet:
if (consensusParams.fPowAllowMinDifficultyBlocks) {
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams);
}
return nNewTime - nOldTime;
}
void RegenerateCommitments(CBlock& block, ChainstateManager& chainman)
{
CMutableTransaction tx{*block.vtx.at(0)};
tx.vout.erase(tx.vout.begin() + GetWitnessCommitmentIndex(block));
block.vtx.at(0) = MakeTransactionRef(tx);
const CBlockIndex* prev_block = WITH_LOCK(::cs_main, return chainman.m_blockman.LookupBlockIndex(block.hashPrevBlock));
chainman.GenerateCoinbaseCommitment(block, prev_block);
block.hashMerkleRoot = BlockMerkleRoot(block);
}
static BlockAssembler::Options ClampOptions(BlockAssembler::Options options)
{
options.block_reserved_weight = std::clamp<size_t>(options.block_reserved_weight, MINIMUM_BLOCK_RESERVED_WEIGHT, MAX_BLOCK_WEIGHT);
options.coinbase_output_max_additional_sigops = std::clamp<size_t>(options.coinbase_output_max_additional_sigops, 0, MAX_BLOCK_SIGOPS_COST);
// Limit weight to between block_reserved_weight and MAX_BLOCK_WEIGHT for sanity:
// block_reserved_weight can safely exceed -blockmaxweight, but the rest of the block template will be empty.
options.nBlockMaxWeight = std::clamp<size_t>(options.nBlockMaxWeight, options.block_reserved_weight, MAX_BLOCK_WEIGHT);
return options;
}
BlockAssembler::BlockAssembler(Chainstate& chainstate, const CTxMemPool* mempool, const Options& options)
: chainparams{chainstate.m_chainman.GetParams()},
m_mempool{options.use_mempool ? mempool : nullptr},
m_chainstate{chainstate},
m_options{ClampOptions(options)}
{
}
void ApplyArgsManOptions(const ArgsManager& args, BlockAssembler::Options& options)
{
// Block resource limits
options.nBlockMaxWeight = args.GetIntArg("-blockmaxweight", options.nBlockMaxWeight);
if (const auto blockmintxfee{args.GetArg("-blockmintxfee")}) {
if (const auto parsed{ParseMoney(*blockmintxfee)}) options.blockMinFeeRate = CFeeRate{*parsed};
}
options.print_modified_fee = args.GetBoolArg("-printpriority", options.print_modified_fee);
options.block_reserved_weight = args.GetIntArg("-blockreservedweight", options.block_reserved_weight);
}
void BlockAssembler::resetBlock()
{
inBlock.clear();
// Reserve space for fixed-size block header, txs count, and coinbase tx.
nBlockWeight = m_options.block_reserved_weight;
nBlockSigOpsCost = m_options.coinbase_output_max_additional_sigops;
// These counters do not include coinbase tx
nBlockTx = 0;
nFees = 0;
}
std::unique_ptr<CBlockTemplate> BlockAssembler::CreateNewBlock()
{
const auto time_start{SteadyClock::now()};
resetBlock();
pblocktemplate.reset(new CBlockTemplate());
CBlock* const pblock = &pblocktemplate->block; // pointer for convenience
// Add dummy coinbase tx as first transaction. It is skipped by the
// getblocktemplate RPC and mining interface consumers must not use it.
pblock->vtx.emplace_back();
LOCK(::cs_main);
CBlockIndex* pindexPrev = m_chainstate.m_chain.Tip();
assert(pindexPrev != nullptr);
nHeight = pindexPrev->nHeight + 1;
pblock->nVersion = m_chainstate.m_chainman.m_versionbitscache.ComputeBlockVersion(pindexPrev, chainparams.GetConsensus());
// -regtest only: allow overriding block.nVersion with
// -blockversion=N to test forking scenarios
if (chainparams.MineBlocksOnDemand()) {
pblock->nVersion = gArgs.GetIntArg("-blockversion", pblock->nVersion);
}
pblock->nTime = TicksSinceEpoch<std::chrono::seconds>(NodeClock::now());
m_lock_time_cutoff = pindexPrev->GetMedianTimePast();
int nPackagesSelected = 0;
int nDescendantsUpdated = 0;
if (m_mempool) {
addPackageTxs(nPackagesSelected, nDescendantsUpdated);
}
const auto time_1{SteadyClock::now()};
m_last_block_num_txs = nBlockTx;
m_last_block_weight = nBlockWeight;
// Create coinbase transaction.
CMutableTransaction coinbaseTx;
coinbaseTx.vin.resize(1);
coinbaseTx.vin[0].prevout.SetNull();
coinbaseTx.vin[0].nSequence = CTxIn::MAX_SEQUENCE_NONFINAL; // Make sure timelock is enforced.
coinbaseTx.vout.resize(1);
coinbaseTx.vout[0].scriptPubKey = m_options.coinbase_output_script;
coinbaseTx.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus());
coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0;
Assert(nHeight > 0);
coinbaseTx.nLockTime = static_cast<uint32_t>(nHeight - 1);
pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx));
pblocktemplate->vchCoinbaseCommitment = m_chainstate.m_chainman.GenerateCoinbaseCommitment(*pblock, pindexPrev);
LogPrintf("CreateNewBlock(): block weight: %u txs: %u fees: %ld sigops %d\n", GetBlockWeight(*pblock), nBlockTx, nFees, nBlockSigOpsCost);
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus());
pblock->nNonce = 0;
if (m_options.test_block_validity) {
if (BlockValidationState state{TestBlockValidity(m_chainstate, *pblock, /*check_pow=*/false, /*check_merkle_root=*/false)}; !state.IsValid()) {
throw std::runtime_error(strprintf("TestBlockValidity failed: %s", state.ToString()));
}
}
const auto time_2{SteadyClock::now()};
LogDebug(BCLog::BENCH, "CreateNewBlock() packages: %.2fms (%d packages, %d updated descendants), validity: %.2fms (total %.2fms)\n",
Ticks<MillisecondsDouble>(time_1 - time_start), nPackagesSelected, nDescendantsUpdated,
Ticks<MillisecondsDouble>(time_2 - time_1),
Ticks<MillisecondsDouble>(time_2 - time_start));
return std::move(pblocktemplate);
}
void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet)
{
for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) {
// Only test txs not already in the block
if (inBlock.count((*iit)->GetSharedTx()->GetHash())) {
testSet.erase(iit++);
} else {
iit++;
}
}
}
bool BlockAssembler::TestPackage(uint64_t packageSize, int64_t packageSigOpsCost) const
{
// TODO: switch to weight-based accounting for packages instead of vsize-based accounting.
if (nBlockWeight + WITNESS_SCALE_FACTOR * packageSize >= m_options.nBlockMaxWeight) {
return false;
}
if (nBlockSigOpsCost + packageSigOpsCost >= MAX_BLOCK_SIGOPS_COST) {
return false;
}
return true;
}
// Perform transaction-level checks before adding to block:
// - transaction finality (locktime)
bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package) const
{
for (CTxMemPool::txiter it : package) {
if (!IsFinalTx(it->GetTx(), nHeight, m_lock_time_cutoff)) {
return false;
}
}
return true;
}
void BlockAssembler::AddToBlock(CTxMemPool::txiter iter)
{
pblocktemplate->block.vtx.emplace_back(iter->GetSharedTx());
pblocktemplate->vTxFees.push_back(iter->GetFee());
pblocktemplate->vTxSigOpsCost.push_back(iter->GetSigOpCost());
nBlockWeight += iter->GetTxWeight();
++nBlockTx;
nBlockSigOpsCost += iter->GetSigOpCost();
nFees += iter->GetFee();
inBlock.insert(iter->GetSharedTx()->GetHash());
if (m_options.print_modified_fee) {
LogPrintf("fee rate %s txid %s\n",
CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(),
iter->GetTx().GetHash().ToString());
}
}
/** Add descendants of given transactions to mapModifiedTx with ancestor
* state updated assuming given transactions are inBlock. Returns number
* of updated descendants. */
static int UpdatePackagesForAdded(const CTxMemPool& mempool,
const CTxMemPool::setEntries& alreadyAdded,
indexed_modified_transaction_set& mapModifiedTx) EXCLUSIVE_LOCKS_REQUIRED(mempool.cs)
{
AssertLockHeld(mempool.cs);
int nDescendantsUpdated = 0;
for (CTxMemPool::txiter it : alreadyAdded) {
CTxMemPool::setEntries descendants;
mempool.CalculateDescendants(it, descendants);
// Insert all descendants (not yet in block) into the modified set
for (CTxMemPool::txiter desc : descendants) {
if (alreadyAdded.count(desc)) {
continue;
}
++nDescendantsUpdated;
modtxiter mit = mapModifiedTx.find(desc);
if (mit == mapModifiedTx.end()) {
CTxMemPoolModifiedEntry modEntry(desc);
mit = mapModifiedTx.insert(modEntry).first;
}
mapModifiedTx.modify(mit, update_for_parent_inclusion(it));
}
}
return nDescendantsUpdated;
}
void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, std::vector<CTxMemPool::txiter>& sortedEntries)
{
// Sort package by ancestor count
// If a transaction A depends on transaction B, then A's ancestor count
// must be greater than B's. So this is sufficient to validly order the
// transactions for block inclusion.
sortedEntries.clear();
sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end());
std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount());
}
// This transaction selection algorithm orders the mempool based
// on feerate of a transaction including all unconfirmed ancestors.
// Since we don't remove transactions from the mempool as we select them
// for block inclusion, we need an alternate method of updating the feerate
// of a transaction with its not-yet-selected ancestors as we go.
// This is accomplished by walking the in-mempool descendants of selected
// transactions and storing a temporary modified state in mapModifiedTxs.
// Each time through the loop, we compare the best transaction in
// mapModifiedTxs with the next transaction in the mempool to decide what
// transaction package to work on next.
void BlockAssembler::addPackageTxs(int& nPackagesSelected, int& nDescendantsUpdated)
{
const auto& mempool{*Assert(m_mempool)};
LOCK(mempool.cs);
// mapModifiedTx will store sorted packages after they are modified
// because some of their txs are already in the block
indexed_modified_transaction_set mapModifiedTx;
// Keep track of entries that failed inclusion, to avoid duplicate work
std::set<Txid> failedTx;
CTxMemPool::indexed_transaction_set::index<ancestor_score>::type::iterator mi = mempool.mapTx.get<ancestor_score>().begin();
CTxMemPool::txiter iter;
// Limit the number of attempts to add transactions to the block when it is
// close to full; this is just a simple heuristic to finish quickly if the
// mempool has a lot of entries.
const int64_t MAX_CONSECUTIVE_FAILURES = 1000;
constexpr int32_t BLOCK_FULL_ENOUGH_WEIGHT_DELTA = 4000;
int64_t nConsecutiveFailed = 0;
while (mi != mempool.mapTx.get<ancestor_score>().end() || !mapModifiedTx.empty()) {
// First try to find a new transaction in mapTx to evaluate.
//
// Skip entries in mapTx that are already in a block or are present
// in mapModifiedTx (which implies that the mapTx ancestor state is
// stale due to ancestor inclusion in the block)
// Also skip transactions that we've already failed to add. This can happen if
// we consider a transaction in mapModifiedTx and it fails: we can then
// potentially consider it again while walking mapTx. It's currently
// guaranteed to fail again, but as a belt-and-suspenders check we put it in
// failedTx and avoid re-evaluation, since the re-evaluation would be using
// cached size/sigops/fee values that are not actually correct.
/** Return true if given transaction from mapTx has already been evaluated,
* or if the transaction's cached data in mapTx is incorrect. */
if (mi != mempool.mapTx.get<ancestor_score>().end()) {
auto it = mempool.mapTx.project<0>(mi);
assert(it != mempool.mapTx.end());
if (mapModifiedTx.count(it) || inBlock.count(it->GetSharedTx()->GetHash()) || failedTx.count(it->GetSharedTx()->GetHash())) {
++mi;
continue;
}
}
// Now that mi is not stale, determine which transaction to evaluate:
// the next entry from mapTx, or the best from mapModifiedTx?
bool fUsingModified = false;
modtxscoreiter modit = mapModifiedTx.get<ancestor_score>().begin();
if (mi == mempool.mapTx.get<ancestor_score>().end()) {
// We're out of entries in mapTx; use the entry from mapModifiedTx
iter = modit->iter;
fUsingModified = true;
} else {
// Try to compare the mapTx entry to the mapModifiedTx entry
iter = mempool.mapTx.project<0>(mi);
if (modit != mapModifiedTx.get<ancestor_score>().end() &&
CompareTxMemPoolEntryByAncestorFee()(*modit, CTxMemPoolModifiedEntry(iter))) {
// The best entry in mapModifiedTx has higher score
// than the one from mapTx.
// Switch which transaction (package) to consider
iter = modit->iter;
fUsingModified = true;
} else {
// Either no entry in mapModifiedTx, or it's worse than mapTx.
// Increment mi for the next loop iteration.
++mi;
}
}
// We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't
// contain anything that is inBlock.
assert(!inBlock.count(iter->GetSharedTx()->GetHash()));
uint64_t packageSize = iter->GetSizeWithAncestors();
CAmount packageFees = iter->GetModFeesWithAncestors();
int64_t packageSigOpsCost = iter->GetSigOpCostWithAncestors();
if (fUsingModified) {
packageSize = modit->nSizeWithAncestors;
packageFees = modit->nModFeesWithAncestors;
packageSigOpsCost = modit->nSigOpCostWithAncestors;
}
if (packageFees < m_options.blockMinFeeRate.GetFee(packageSize)) {
// Everything else we might consider has a lower fee rate
return;
}
if (!TestPackage(packageSize, packageSigOpsCost)) {
if (fUsingModified) {
// Since we always look at the best entry in mapModifiedTx,
// we must erase failed entries so that we can consider the
// next best entry on the next loop iteration
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter->GetSharedTx()->GetHash());
}
++nConsecutiveFailed;
if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockWeight +
BLOCK_FULL_ENOUGH_WEIGHT_DELTA > m_options.nBlockMaxWeight) {
// Give up if we're close to full and haven't succeeded in a while
break;
}
continue;
}
auto ancestors{mempool.AssumeCalculateMemPoolAncestors(__func__, *iter, CTxMemPool::Limits::NoLimits(), /*fSearchForParents=*/false)};
onlyUnconfirmed(ancestors);
ancestors.insert(iter);
// Test if all tx's are Final
if (!TestPackageTransactions(ancestors)) {
if (fUsingModified) {
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter->GetSharedTx()->GetHash());
}
continue;
}
// This transaction will make it in; reset the failed counter.
nConsecutiveFailed = 0;
// Package can be added. Sort the entries in a valid order.
std::vector<CTxMemPool::txiter> sortedEntries;
SortForBlock(ancestors, sortedEntries);
for (size_t i = 0; i < sortedEntries.size(); ++i) {
AddToBlock(sortedEntries[i]);
// Erase from the modified set, if present
mapModifiedTx.erase(sortedEntries[i]);
}
++nPackagesSelected;
pblocktemplate->m_package_feerates.emplace_back(packageFees, static_cast<int32_t>(packageSize));
// Update transactions that depend on each of these
nDescendantsUpdated += UpdatePackagesForAdded(mempool, ancestors, mapModifiedTx);
}
}
void AddMerkleRootAndCoinbase(CBlock& block, CTransactionRef coinbase, uint32_t version, uint32_t timestamp, uint32_t nonce)
{
if (block.vtx.size() == 0) {
block.vtx.emplace_back(coinbase);
} else {
block.vtx[0] = coinbase;
}
block.nVersion = version;
block.nTime = timestamp;
block.nNonce = nonce;
block.hashMerkleRoot = BlockMerkleRoot(block);
}
std::unique_ptr<CBlockTemplate> WaitAndCreateNewBlock(ChainstateManager& chainman,
KernelNotifications& kernel_notifications,
CTxMemPool* mempool,
const std::unique_ptr<CBlockTemplate>& block_template,
const BlockWaitOptions& options,
const BlockAssembler::Options& assemble_options)
{
// Delay calculating the current template fees, just in case a new block
// comes in before the next tick.
CAmount current_fees = -1;
// Alternate waiting for a new tip and checking if fees have risen.
// The latter check is expensive so we only run it once per second.
auto now{NodeClock::now()};
const auto deadline = now + options.timeout;
const MillisecondsDouble tick{1000};
const bool allow_min_difficulty{chainman.GetParams().GetConsensus().fPowAllowMinDifficultyBlocks};
do {
bool tip_changed{false};
{
WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock);
// Note that wait_until() checks the predicate before waiting
kernel_notifications.m_tip_block_cv.wait_until(lock, std::min(now + tick, deadline), [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
AssertLockHeld(kernel_notifications.m_tip_block_mutex);
const auto tip_block{kernel_notifications.TipBlock()};
// We assume tip_block is set, because this is an instance
// method on BlockTemplate and no template could have been
// generated before a tip exists.
tip_changed = Assume(tip_block) && tip_block != block_template->block.hashPrevBlock;
return tip_changed || chainman.m_interrupt;
});
}
if (chainman.m_interrupt) return nullptr;
// At this point the tip changed, a full tick went by or we reached
// the deadline.
// Must release m_tip_block_mutex before locking cs_main, to avoid deadlocks.
LOCK(::cs_main);
// On test networks return a minimum difficulty block after 20 minutes
if (!tip_changed && allow_min_difficulty) {
const NodeClock::time_point tip_time{std::chrono::seconds{chainman.ActiveChain().Tip()->GetBlockTime()}};
if (now > tip_time + 20min) {
tip_changed = true;
}
}
/**
* We determine if fees increased compared to the previous template by generating
* a fresh template. There may be more efficient ways to determine how much
* (approximate) fees for the next block increased, perhaps more so after
* Cluster Mempool.
*
* We'll also create a new template if the tip changed during this iteration.
*/
if (options.fee_threshold < MAX_MONEY || tip_changed) {
auto new_tmpl{BlockAssembler{
chainman.ActiveChainstate(),
mempool,
assemble_options}
.CreateNewBlock()};
// If the tip changed, return the new template regardless of its fees.
if (tip_changed) return new_tmpl;
// Calculate the original template total fees if we haven't already
if (current_fees == -1) {
current_fees = 0;
for (CAmount fee : block_template->vTxFees) {
current_fees += fee;
}
}
CAmount new_fees = 0;
for (CAmount fee : new_tmpl->vTxFees) {
new_fees += fee;
Assume(options.fee_threshold != MAX_MONEY);
if (new_fees >= current_fees + options.fee_threshold) return new_tmpl;
}
}
now = NodeClock::now();
} while (now < deadline);
return nullptr;
}
std::optional<BlockRef> GetTip(ChainstateManager& chainman)
{
LOCK(::cs_main);
CBlockIndex* tip{chainman.ActiveChain().Tip()};
if (!tip) return {};
return BlockRef{tip->GetBlockHash(), tip->nHeight};
}
std::optional<BlockRef> WaitTipChanged(ChainstateManager& chainman, KernelNotifications& kernel_notifications, const uint256& current_tip, MillisecondsDouble& timeout)
{
Assume(timeout >= 0ms); // No internal callers should use a negative timeout
if (timeout < 0ms) timeout = 0ms;
if (timeout > std::chrono::years{100}) timeout = std::chrono::years{100}; // Upper bound to avoid UB in std::chrono
auto deadline{std::chrono::steady_clock::now() + timeout};
{
WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock);
// For callers convenience, wait longer than the provided timeout
// during startup for the tip to be non-null. That way this function
// always returns valid tip information when possible and only
// returns null when shutting down, not when timing out.
kernel_notifications.m_tip_block_cv.wait(lock, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
return kernel_notifications.TipBlock() || chainman.m_interrupt;
});
if (chainman.m_interrupt) return {};
// At this point TipBlock is set, so continue to wait until it is
// different then `current_tip` provided by caller.
kernel_notifications.m_tip_block_cv.wait_until(lock, deadline, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) {
return Assume(kernel_notifications.TipBlock()) != current_tip || chainman.m_interrupt;
});
}
if (chainman.m_interrupt) return {};
// Must release m_tip_block_mutex before getTip() locks cs_main, to
// avoid deadlocks.
return GetTip(chainman);
}
} // namespace node