mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-05-04 00:41:36 +02:00
c545fdc374 Merge bitcoin-core/secp256k1#1298: Remove randomness tests b40e2d30b7 Merge bitcoin-core/secp256k1#1378: ellswift: fix probabilistic test failure when swapping sides c424e2fb43 ellswift: fix probabilistic test failure when swapping sides 907a67212e Merge bitcoin-core/secp256k1#1313: ci: Test on development snapshots of GCC and Clang 0f7657d59c Merge bitcoin-core/secp256k1#1366: field: Use `restrict` consistently in fe_sqrt cc55757552 Merge bitcoin-core/secp256k1#1340: clean up in-comment Sage code (refer to secp256k1_params.sage, update to Python3) 600c5adcd5 clean up in-comment Sage code (refer to secp256k1_params.sage, update to Python3) 981e5be38c ci: Fix typo in comment e9e9648219 ci: Reduce number of macOS tasks from 28 to 8 609093b387 ci: Add x86_64 Linux tasks for gcc and clang snapshots 1deecaaf3b ci: Install development snapshots of gcc and clang b79ba8aa4c field: Use `restrict` consistently in fe_sqrt c9ebca95f9 Merge bitcoin-core/secp256k1#1363: doc: minor ellswift.md updates afd7eb4a55 Merge bitcoin-core/secp256k1#1371: Add exhaustive tests for ellswift (with create+decode roundtrip) 2792119278 Add exhaustive test for ellswift (create+decode roundtrip) c7d900ffd1 doc: minor ellswift.md updates 332af315fc Merge bitcoin-core/secp256k1#1344: group: save normalize_weak calls in `secp256k1_ge_is_valid_var`/`secp256k1_gej_eq_x_var` 9e6d1b0e9b Merge bitcoin-core/secp256k1#1367: build: Improvements to symbol visibility logic on Windows (attempt 3) 0aacf64352 Merge bitcoin-core/secp256k1#1370: Corrected some typos b6b9834e8d small fixes 07c0e8b82e group: remove unneeded normalize_weak in `secp256k1_gej_eq_x_var` 3fc1de5c55 Merge bitcoin-core/secp256k1#1364: Avoid `-Wmaybe-uninitialized` when compiling with `gcc -O1` fb758fe8d6 Merge bitcoin-core/secp256k1#1323: tweak_add: fix API doc for tweak=0 c6cd2b15a0 ci: Add task for static library on Windows + CMake 020bf69a44 build: Add extensive docs on visibility issues 0196e8ade1 build: Introduce `SECP256k1_DLL_EXPORT` macro 9f1b1904a3 refactor: Replace `SECP256K1_API_VAR` with `SECP256K1_API` ae9db95cea build: Introduce `SECP256K1_STATIC` macro for Windows users 7966aee31d Merge bitcoin-core/secp256k1#1369: ci: Print commit in Windows container a7bec34231 ci: Print commit in Windows container 249c81eaa3 Merge bitcoin-core/secp256k1#1368: ci: Drop manual checkout of merge commit 98579e297b ci: Drop manual checkout of merge commit 5b9f37f136 ci: Add `CFLAGS: -O1` to task matrix a6ca76cdf2 Avoid `-Wmaybe-uninitialized` when compiling with `gcc -O1` 0fa84f869d Merge bitcoin-core/secp256k1#1358: tests: introduce helper for non-zero `random_fe_test()` results 5a95a268b9 tests: introduce helper for non-zero `random_fe_test` results 304421d57b tests: refactor: remove duplicate function `random_field_element_test` 3aef6ab8e1 Merge bitcoin-core/secp256k1#1345: field: Static-assert that int args affecting magnitude are constant 4494a369b6 Merge bitcoin-core/secp256k1#1357: tests: refactor: take use of `secp256k1_ge_x_on_curve_var` 799f4eec27 Merge bitcoin-core/secp256k1#1356: ci: Adjust Docker image to Debian 12 "bookworm" c862a9fb49 ci: Adjust Docker image to Debian 12 "bookworm" a1782098a9 ci: Force DWARF v4 for Clang when Valgrind tests are expected 7d8d5c86df tests: refactor: take use of `secp256k1_ge_x_on_curve_var` 8a7273465b Help the compiler prove that a loop is entered fd491ea1bb Merge bitcoin-core/secp256k1#1355: Fix a typo in the error message ac43613d25 Merge bitcoin-core/secp256k1#1354: Add ellswift to CHANGELOG 67887ae65c Fix a typo in the error message 926dd3e962 Merge bitcoin-core/secp256k1#1295: abi: Use dllexport for mingw builds 10836832e7 Merge bitcoin-core/secp256k1#1336: Use `__shiftright128` intrinsic in `secp256k1_u128_rshift` on MSVC 7c7467ab7f Refer to ellswift.md in API docs c32ffd8d8c Add ellswift to CHANGELOG 3c1a0fd37f Merge bitcoin-core/secp256k1#1347: field: Document return value of fe_sqrt() 5779137457 field: Document return value of fe_sqrt() be8ff3a02a field: Static-assert that int args affecting magnitude are constant efa76c4bf7 group: remove unneeded normalize_weak in `secp256k1_ge_is_valid_var` 5b7bf2e9d4 Use `__shiftright128` intrinsic in `secp256k1_u128_rshift` on MSVC 05873bb6b1 tweak_add: fix API doc for tweak=0 6ec3731e8c Simplify test PRNG implementation fb5bfa4eed Add static test vector for Xoshiro256++ 723e8ca8f7 Remove randomness tests bc7c8db179 abi: Use dllexport for mingw builds git-subtree-dir: src/secp256k1 git-subtree-split: c545fdc374964424683d9dac31a828adedabe860
181 lines
9.6 KiB
C
181 lines
9.6 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_GROUP_H
|
|
#define SECP256K1_GROUP_H
|
|
|
|
#include "field.h"
|
|
|
|
/** A group element in affine coordinates on the secp256k1 curve,
|
|
* or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
|
|
* Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
|
|
*/
|
|
typedef struct {
|
|
secp256k1_fe x;
|
|
secp256k1_fe y;
|
|
int infinity; /* whether this represents the point at infinity */
|
|
} secp256k1_ge;
|
|
|
|
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
|
|
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
|
|
|
|
/** A group element of the secp256k1 curve, in jacobian coordinates.
|
|
* Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
|
|
*/
|
|
typedef struct {
|
|
secp256k1_fe x; /* actual X: x/z^2 */
|
|
secp256k1_fe y; /* actual Y: y/z^3 */
|
|
secp256k1_fe z;
|
|
int infinity; /* whether this represents the point at infinity */
|
|
} secp256k1_gej;
|
|
|
|
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
|
|
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
|
|
|
|
typedef struct {
|
|
secp256k1_fe_storage x;
|
|
secp256k1_fe_storage y;
|
|
} secp256k1_ge_storage;
|
|
|
|
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
|
|
|
|
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
|
|
|
|
/** Set a group element equal to the point with given X and Y coordinates */
|
|
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
|
|
|
|
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
|
|
* for Y. Return value indicates whether the result is valid. */
|
|
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
|
|
|
/** Determine whether x is a valid X coordinate on the curve. */
|
|
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
|
|
|
|
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
|
|
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
|
|
|
|
/** Check whether a group element is the point at infinity. */
|
|
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
|
|
|
|
/** Check whether a group element is valid (i.e., on the curve). */
|
|
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
|
|
|
|
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
|
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
|
|
|
|
/** Set a group element equal to another which is given in jacobian coordinates. Constant time. */
|
|
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
|
|
|
|
/** Set a group element equal to another which is given in jacobian coordinates. */
|
|
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
|
|
|
|
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
|
|
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
|
|
|
|
/** Bring a batch of inputs to the same global z "denominator", based on ratios between
|
|
* (omitted) z coordinates of adjacent elements.
|
|
*
|
|
* Although the elements a[i] are _ge rather than _gej, they actually represent elements
|
|
* in Jacobian coordinates with their z coordinates omitted.
|
|
*
|
|
* Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
|
|
* z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
|
|
* The zr[0] value is unused.
|
|
*
|
|
* This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
|
|
* In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
|
|
* a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
|
|
* implicit.
|
|
*
|
|
* The coordinates of the final element a[len-1] are not changed.
|
|
*/
|
|
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
|
|
|
|
/** Set a group element (affine) equal to the point at infinity. */
|
|
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
|
|
|
|
/** Set a group element (jacobian) equal to the point at infinity. */
|
|
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
|
|
|
|
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
|
|
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
|
|
|
|
/** Check two group elements (jacobian) for equality in variable time. */
|
|
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
|
|
|
|
/** Compare the X coordinate of a group element (jacobian).
|
|
* The magnitude of the group element's X coordinate must not exceed 31. */
|
|
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
|
|
|
|
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
|
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
|
|
|
|
/** Check whether a group element is the point at infinity. */
|
|
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
|
|
|
|
/** Set r equal to the double of a. Constant time. */
|
|
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
|
|
|
|
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
|
|
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
|
|
|
/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
|
|
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
|
|
|
|
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
|
|
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
|
|
|
|
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
|
|
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
|
|
guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
|
|
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
|
|
|
|
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
|
|
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
|
|
|
|
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
|
|
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
|
|
|
|
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
|
|
static void secp256k1_gej_clear(secp256k1_gej *r);
|
|
|
|
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
|
|
static void secp256k1_ge_clear(secp256k1_ge *r);
|
|
|
|
/** Convert a group element to the storage type. */
|
|
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
|
|
|
|
/** Convert a group element back from the storage type. */
|
|
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
|
|
|
|
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
|
static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag);
|
|
|
|
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
|
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
|
|
|
|
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
|
|
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
|
|
|
|
/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
|
|
*
|
|
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
|
|
* group, and this function returns always true.
|
|
*
|
|
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
|
|
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
|
|
* function checks whether a point that is on the curve is in fact also in that subgroup.
|
|
*/
|
|
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
|
|
|
|
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
|
|
static void secp256k1_ge_verify(const secp256k1_ge *a);
|
|
|
|
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
|
|
static void secp256k1_gej_verify(const secp256k1_gej *a);
|
|
|
|
#endif /* SECP256K1_GROUP_H */
|