Search Regression Test and Save/Load State updates (#761)

This commit is contained in:
Yuhong Sun 2023-11-23 00:00:30 -08:00 committed by GitHub
parent fda377a2fa
commit 13001ede98
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 138 additions and 46 deletions

View File

@ -248,7 +248,9 @@ def answer_qa_query_stream(
batch_offset=offset_count,
)
llm_relevance_filtering_response = LLMRelevanceFilterResponse(
relevant_chunk_indices=llm_chunks_indices
relevant_chunk_indices=[
index for index, value in enumerate(llm_chunk_selection) if value
]
).dict()
yield get_json_line(llm_relevance_filtering_response)

View File

@ -322,7 +322,7 @@ def get_usable_chunks(
def get_chunks_for_qa(
chunks: list[InferenceChunk],
llm_chunk_selection: list[bool],
token_limit: int = NUM_DOCUMENT_TOKENS_FED_TO_GENERATIVE_MODEL,
token_limit: int | None = NUM_DOCUMENT_TOKENS_FED_TO_GENERATIVE_MODEL,
batch_offset: int = 0,
) -> list[int]:
"""
@ -353,13 +353,17 @@ def get_chunks_for_qa(
token_count += chunk_token + 50
# Always use at least 1 chunk
if token_count <= token_limit or not latest_batch_indices:
if (
token_limit is None
or token_count <= token_limit
or not latest_batch_indices
):
latest_batch_indices.append(ind)
current_chunk_unused = False
else:
current_chunk_unused = True
if token_count >= token_limit:
if token_limit is not None and token_count >= token_limit:
if batch_index < batch_offset:
batch_index += 1
if current_chunk_unused:

View File

@ -540,7 +540,7 @@ def full_chunk_search_generator(
if llm_filter_task_id
else None,
)
if llm_chunk_selection:
if llm_chunk_selection is not None:
yield [chunk.unique_id in llm_chunk_selection for chunk in retrieved_chunks]
else:
yield [True for _ in reranked_chunks or retrieved_chunks]

View File

@ -1,4 +1,5 @@
# This file is purely for development use, not included in any builds
# Remember to first to send over the schema information (run API Server)
import argparse
import json
import os
@ -19,25 +20,40 @@ from danswer.utils.logger import setup_logger
logger = setup_logger()
def save_postgres(filename: str) -> None:
def save_postgres(filename: str, container_name: str) -> None:
logger.info("Attempting to take Postgres snapshot")
cmd = f"pg_dump -U {POSTGRES_USER} -h {POSTGRES_HOST} -p {POSTGRES_PORT} -W -F t {POSTGRES_DB} > {filename}"
subprocess.run(
cmd, shell=True, check=True, input=f"{POSTGRES_PASSWORD}\n", text=True
)
cmd = f"docker exec {container_name} pg_dump -U {POSTGRES_USER} -h {POSTGRES_HOST} -p {POSTGRES_PORT} -W -F t {POSTGRES_DB}"
with open(filename, "w") as file:
subprocess.run(
cmd,
shell=True,
check=True,
stdout=file,
text=True,
input=f"{POSTGRES_PASSWORD}\n",
)
def load_postgres(filename: str) -> None:
def load_postgres(filename: str, container_name: str) -> None:
logger.info("Attempting to load Postgres snapshot")
try:
alembic_cfg = Config("alembic.ini")
command.upgrade(alembic_cfg, "head")
except Exception:
logger.info("Alembic upgrade failed, maybe already has run")
cmd = f"pg_restore --clean -U {POSTGRES_USER} -h {POSTGRES_HOST} -p {POSTGRES_PORT} -W -d {POSTGRES_DB} -1 {filename}"
subprocess.run(
cmd, shell=True, check=True, input=f"{POSTGRES_PASSWORD}\n", text=True
except Exception as e:
logger.error(f"Alembic upgrade failed: {e}")
host_file_path = os.path.abspath(filename)
copy_cmd = f"docker cp {host_file_path} {container_name}:/tmp/"
subprocess.run(copy_cmd, shell=True, check=True)
container_file_path = f"/tmp/{os.path.basename(filename)}"
restore_cmd = (
f"docker exec {container_name} pg_restore --clean -U {POSTGRES_USER} "
f"-h localhost -p {POSTGRES_PORT} -d {POSTGRES_DB} -1 -F t {container_file_path}"
)
subprocess.run(restore_cmd, shell=True, check=True)
def save_vespa(filename: str) -> None:
@ -85,6 +101,12 @@ if __name__ == "__main__":
parser.add_argument(
"--load", action="store_true", help="Load Danswer state from save directory."
)
parser.add_argument(
"--postgres_container_name",
type=str,
default="danswer-stack-relational_db-1",
help="Name of the postgres container to dump",
)
parser.add_argument(
"--checkpoint_dir",
type=str,
@ -94,6 +116,7 @@ if __name__ == "__main__":
args = parser.parse_args()
checkpoint_dir = args.checkpoint_dir
postgres_container = args.postgres_container_name
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
@ -102,8 +125,12 @@ if __name__ == "__main__":
raise ValueError("Must specify --save or --load")
if args.load:
load_postgres(os.path.join(checkpoint_dir, "postgres_snapshot.tar"))
load_postgres(
os.path.join(checkpoint_dir, "postgres_snapshot.tar"), postgres_container
)
load_vespa(os.path.join(checkpoint_dir, "vespa_snapshot.jsonl"))
else:
save_postgres(os.path.join(checkpoint_dir, "postgres_snapshot.tar"))
save_postgres(
os.path.join(checkpoint_dir, "postgres_snapshot.tar"), postgres_container
)
save_vespa(os.path.join(checkpoint_dir, "vespa_snapshot.jsonl"))

View File

@ -8,6 +8,7 @@ from typing import TextIO
from sqlalchemy.orm import Session
from danswer.db.engine import get_sqlalchemy_engine
from danswer.direct_qa.qa_utils import get_chunks_for_qa
from danswer.document_index.factory import get_default_document_index
from danswer.indexing.models import InferenceChunk
from danswer.search.models import IndexFilters
@ -70,7 +71,6 @@ def get_search_results(
query: str, db_session: Session
) -> tuple[
list[InferenceChunk],
list[bool],
RetrievalMetricsContainer | None,
RerankMetricsContainer | None,
]:
@ -89,7 +89,7 @@ def get_search_results(
retrieval_metrics = MetricsHander[RetrievalMetricsContainer]()
rerank_metrics = MetricsHander[RerankMetricsContainer]()
chunks, llm_filter, query_id = danswer_search(
top_chunks, llm_chunk_selection, query_id = danswer_search(
question=question,
user=None,
db_session=db_session,
@ -99,16 +99,23 @@ def get_search_results(
rerank_metrics_callback=rerank_metrics.record_metric,
)
llm_chunks_indices = get_chunks_for_qa(
chunks=top_chunks,
llm_chunk_selection=llm_chunk_selection,
token_limit=None,
)
llm_chunks = [top_chunks[i] for i in llm_chunks_indices]
return (
chunks,
llm_filter,
llm_chunks,
retrieval_metrics.metrics,
rerank_metrics.metrics,
)
def _print_retrieval_metrics(
metrics_container: RetrievalMetricsContainer, show_all: bool
metrics_container: RetrievalMetricsContainer, show_all: bool = False
) -> None:
for ind, metric in enumerate(metrics_container.metrics):
if not show_all and ind >= 10:
@ -117,14 +124,13 @@ def _print_retrieval_metrics(
if ind != 0:
print() # for spacing purposes
print(f"\tDocument: {metric.document_id}")
print(f"\tLink: {metric.first_link or 'NA'}")
section_start = metric.chunk_content_start.replace("\n", " ")
print(f"\tSection Start: {section_start}")
print(f"\tSimilarity Distance Metric: {metric.score}")
def _print_reranking_metrics(
metrics_container: RerankMetricsContainer, show_all: bool
metrics_container: RerankMetricsContainer, show_all: bool = False
) -> None:
# Printing the raw scores as they're more informational than post-norm/boosting
for ind, metric in enumerate(metrics_container.metrics):
@ -134,45 +140,81 @@ def _print_reranking_metrics(
if ind != 0:
print() # for spacing purposes
print(f"\tDocument: {metric.document_id}")
print(f"\tLink: {metric.first_link or 'NA'}")
section_start = metric.chunk_content_start.replace("\n", " ")
print(f"\tSection Start: {section_start}")
print(f"\tSimilarity Score: {metrics_container.raw_similarity_scores[ind]}")
def main(questions_json: str, output_file: str) -> None:
def calculate_score(
log_prefix: str, chunk_ids: list[str], targets: list[str], max_chunks: int = 5
) -> float:
top_ids = chunk_ids[:max_chunks]
matches = [top_id for top_id in top_ids if top_id in targets]
print(f"{log_prefix} Hits: {len(matches)}/{len(targets)}", end="\t")
return len(matches) / min(len(targets), max_chunks)
def main(
questions_json: str, output_file: str, show_details: bool, stop_after: int
) -> None:
questions_info = read_json(questions_json)
running_retrieval_score = 0.0
running_rerank_score = 0.0
running_llm_filter_score = 0.0
with open(output_file, "w") as outfile:
with redirect_print_to_file(outfile):
print("Running Document Retrieval Test\n")
with Session(engine, expire_on_commit=False) as db_session:
for question, targets in questions_info.items():
print(f"Question: {question}")
for ind, (question, targets) in enumerate(questions_info.items()):
if ind >= stop_after:
break
print(f"\n\nQuestion: {question}")
(
chunks,
llm_filters,
top_chunks,
retrieval_metrics,
rerank_metrics,
) = get_search_results(query=question, db_session=db_session)
print("\nRetrieval Metrics:")
if retrieval_metrics is None:
print("No Retrieval Metrics Available")
else:
_print_retrieval_metrics(
retrieval_metrics, show_all=args.all_results
)
assert retrieval_metrics is not None and rerank_metrics is not None
print("\nReranking Metrics:")
if rerank_metrics is None:
print("No Reranking Metrics Available")
else:
_print_reranking_metrics(
rerank_metrics, show_all=args.all_results
)
retrieval_ids = [
metric.document_id for metric in retrieval_metrics.metrics
]
retrieval_score = calculate_score(
"Retrieval", retrieval_ids, targets
)
running_retrieval_score += retrieval_score
print(f"Average: {running_retrieval_score / (ind + 1)}")
rerank_ids = [
metric.document_id for metric in rerank_metrics.metrics
]
rerank_score = calculate_score("Rerank", rerank_ids, targets)
running_rerank_score += rerank_score
print(f"Average: {running_rerank_score / (ind + 1)}")
llm_ids = [chunk.document_id for chunk in top_chunks]
llm_score = calculate_score("LLM Filter", llm_ids, targets)
running_llm_filter_score += llm_score
print(f"Average: {running_llm_filter_score / (ind + 1)}")
if show_details:
print("\nRetrieval Metrics:")
if retrieval_metrics is None:
print("No Retrieval Metrics Available")
else:
_print_retrieval_metrics(retrieval_metrics)
print("\nReranking Metrics:")
if rerank_metrics is None:
print("No Reranking Metrics Available")
else:
_print_reranking_metrics(rerank_metrics)
if __name__ == "__main__":
@ -190,6 +232,23 @@ if __name__ == "__main__":
help="Path to the output results file.",
default="./tests/regression/search_quality/regression_results.txt",
)
parser.add_argument(
"--show_details",
action="store_true",
help="If set, show details of the retrieved chunks.",
default=True,
)
parser.add_argument(
"--stop_after",
type=int,
help="Stop processing after this many iterations.",
default=10,
)
args = parser.parse_args()
main(args.regression_questions_json, args.output_file)
main(
args.regression_questions_json,
args.output_file,
args.show_details,
args.stop_after,
)