missed files from prev commit

This commit is contained in:
Evan Lohn
2025-01-22 16:25:09 -08:00
parent dd260140b2
commit 50bacc03b3
4 changed files with 312 additions and 0 deletions

View File

@@ -0,0 +1,57 @@
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.chat.models import LlmDoc
from onyx.tools.tool_implementations.search_like_tool_utils import (
FINAL_CONTEXT_DOCUMENTS_ID,
)
from onyx.tools.tool_implementations.search_like_tool_utils import (
ORIGINAL_CONTEXT_DOCUMENTS_ID,
)
def basic_use_tool_response(state: BasicState, config: RunnableConfig) -> BasicOutput:
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
structured_response_format = agent_config.structured_response_format
llm = agent_config.primary_llm
tool_choice = state["tool_choice"]
if tool_choice is None:
raise ValueError("Tool choice is None")
tool = tool_choice["tool"]
prompt_builder = agent_config.prompt_builder
tool_call_summary = state["tool_call_summary"]
tool_call_responses = state["tool_call_responses"]
state["tool_call_final_result"]
new_prompt_builder = tool.build_next_prompt(
prompt_builder=prompt_builder,
tool_call_summary=tool_call_summary,
tool_responses=tool_call_responses,
using_tool_calling_llm=agent_config.using_tool_calling_llm,
)
initial_search_results = []
for yield_item in tool_call_responses:
if yield_item.id == FINAL_CONTEXT_DOCUMENTS_ID:
cast(list[LlmDoc], yield_item.response)
elif yield_item.id == ORIGINAL_CONTEXT_DOCUMENTS_ID:
search_contexts = yield_item.response.contexts
for doc in search_contexts:
if doc.document_id not in initial_search_results:
initial_search_results.append(doc)
initial_search_results = cast(list[LlmDoc], initial_search_results)
stream = llm.stream(
prompt=new_prompt_builder.build(),
structured_response_format=structured_response_format,
)
# For now, we don't do multiple tool calls, so we ignore the tool_message
process_llm_stream(stream, True)
return BasicOutput()

View File

@@ -0,0 +1,134 @@
from typing import cast
from uuid import uuid4
from langchain_core.messages import ToolCall
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.states import ToolChoice
from onyx.agents.agent_search.basic.states import ToolChoiceUpdate
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.chat.tool_handling.tool_response_handler import get_tool_by_name
from onyx.chat.tool_handling.tool_response_handler import (
get_tool_call_for_non_tool_calling_llm_impl,
)
from onyx.tools.tool import Tool
from onyx.utils.logger import setup_logger
logger = setup_logger()
# TODO: break this out into an implementation function
# and a function that handles extracting the necessary fields
# from the state and config
# TODO: fan-out to multiple tool call nodes? Make this configurable?
def llm_tool_choice(state: BasicState, config: RunnableConfig) -> ToolChoiceUpdate:
"""
This node is responsible for calling the LLM to choose a tool. If no tool is chosen,
The node MAY emit an answer, depending on whether state["should_stream_answer"] is set.
"""
should_stream_answer = state["should_stream_answer"]
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
using_tool_calling_llm = agent_config.using_tool_calling_llm
prompt_builder = agent_config.prompt_builder
llm = agent_config.primary_llm
skip_gen_ai_answer_generation = agent_config.skip_gen_ai_answer_generation
structured_response_format = agent_config.structured_response_format
tools = agent_config.tools or []
force_use_tool = agent_config.force_use_tool
tool, tool_args = None, None
if force_use_tool.force_use and force_use_tool.args is not None:
tool_name, tool_args = (
force_use_tool.tool_name,
force_use_tool.args,
)
tool = get_tool_by_name(tools, tool_name)
# special pre-logic for non-tool calling LLM case
elif not using_tool_calling_llm and tools:
chosen_tool_and_args = get_tool_call_for_non_tool_calling_llm_impl(
force_use_tool=force_use_tool,
tools=tools,
prompt_builder=prompt_builder,
llm=llm,
)
if chosen_tool_and_args:
tool, tool_args = chosen_tool_and_args
# If we have a tool and tool args, we are redy to request a tool call.
# This only happens if the tool call was forced or we are using a non-tool calling LLM.
if tool and tool_args:
return ToolChoiceUpdate(
tool_choice=ToolChoice(
tool=tool,
tool_args=tool_args,
id=str(uuid4()),
),
)
# if we're skipping gen ai answer generation, we should only
# continue if we're forcing a tool call (which will be emitted by
# the tool calling llm in the stream() below)
if skip_gen_ai_answer_generation and not force_use_tool.force_use:
return ToolChoiceUpdate(
tool_choice=None,
)
# At this point, we are either using a tool calling LLM or we are skipping the tool call.
# DEBUG: good breakpoint
stream = llm.stream(
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
prompt=prompt_builder.build(),
tools=[tool.tool_definition() for tool in tools] or None,
tool_choice=("required" if tools and force_use_tool.force_use else None),
structured_response_format=structured_response_format,
)
tool_message = process_llm_stream(stream, should_stream_answer)
# If no tool calls are emitted by the LLM, we should not choose a tool
if len(tool_message.tool_calls) == 0:
return ToolChoiceUpdate(
tool_choice=None,
)
# TODO: here we could handle parallel tool calls. Right now
# we just pick the first one that matches.
selected_tool: Tool | None = None
selected_tool_call_request: ToolCall | None = None
for tool_call_request in tool_message.tool_calls:
known_tools_by_name = [
tool for tool in tools if tool.name == tool_call_request["name"]
]
if known_tools_by_name:
selected_tool = known_tools_by_name[0]
selected_tool_call_request = tool_call_request
break
logger.error(
"Tool call requested with unknown name field. \n"
f"tools: {tools}"
f"tool_call_request: {tool_call_request}"
)
if not selected_tool or not selected_tool_call_request:
raise ValueError(
f"Tool call attempted with tool {selected_tool}, request {selected_tool_call_request}"
)
logger.info(f"Selected tool: {selected_tool.name}")
logger.debug(f"Selected tool call request: {selected_tool_call_request}")
return ToolChoiceUpdate(
tool_choice=ToolChoice(
tool=selected_tool,
tool_args=selected_tool_call_request["args"],
id=selected_tool_call_request["id"],
),
)

View File

@@ -0,0 +1,69 @@
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import AIMessageChunk
from langchain_core.messages.tool import ToolCall
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.states import ToolCallUpdate
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.chat.models import AnswerPacket
from onyx.tools.message import build_tool_message
from onyx.tools.message import ToolCallSummary
from onyx.tools.tool_runner import ToolRunner
from onyx.utils.logger import setup_logger
logger = setup_logger()
def emit_packet(packet: AnswerPacket) -> None:
dispatch_custom_event("basic_response", packet)
# TODO: handle is_cancelled
def tool_call(state: BasicState, config: RunnableConfig) -> ToolCallUpdate:
"""Calls the tool specified in the state and updates the state with the result"""
# TODO: implement
cast(AgentSearchConfig, config["metadata"]["config"])
# Unnecessary now, node should only be called if there is a tool call
# if not self.tool_call_chunk or not self.tool_call_chunk.tool_calls:
# return
tool_choice = state["tool_choice"]
if tool_choice is None:
raise ValueError("Cannot invoke tool call node without a tool choice")
tool = tool_choice["tool"]
tool_args = tool_choice["tool_args"]
tool_id = tool_choice["id"]
tool_runner = ToolRunner(tool, tool_args)
tool_kickoff = tool_runner.kickoff()
# TODO: custom events for yields
emit_packet(tool_kickoff)
tool_responses = []
for response in tool_runner.tool_responses():
tool_responses.append(response)
emit_packet(response)
tool_final_result = tool_runner.tool_final_result()
emit_packet(tool_final_result)
tool_call = ToolCall(name=tool.name, args=tool_args, id=tool_id)
tool_call_summary = ToolCallSummary(
tool_call_request=AIMessageChunk(content="", tool_calls=[tool_call]),
tool_call_result=build_tool_message(
tool_call, tool_runner.tool_message_content()
),
)
return ToolCallUpdate(
tool_call_summary=tool_call_summary,
tool_call_kickoff=tool_kickoff,
tool_call_responses=tool_responses,
tool_call_final_result=tool_final_result,
)

View File

@@ -0,0 +1,52 @@
from collections.abc import Iterator
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import BaseMessage
from onyx.chat.models import LlmDoc
from onyx.chat.models import OnyxAnswerPiece
from onyx.utils.logger import setup_logger
logger = setup_logger()
# TODO: handle citations here; below is what was previously passed in
# see basic_use_tool_response.py for where these variables come from
# answer_handler = CitationResponseHandler(
# context_docs=final_search_results,
# final_doc_id_to_rank_map=map_document_id_order(final_search_results),
# display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
# )
def process_llm_stream(
stream: Iterator[BaseMessage],
should_stream_answer: bool,
final_search_results: list[LlmDoc] | None = None,
displayed_search_results: list[LlmDoc] | None = None,
) -> AIMessageChunk:
tool_call_chunk = AIMessageChunk(content="")
# for response in response_handler_manager.handle_llm_response(stream):
# This stream will be the llm answer if no tool is chosen. When a tool is chosen,
# the stream will contain AIMessageChunks with tool call information.
for response in stream:
answer_piece = response.content
if not isinstance(answer_piece, str):
# TODO: handle non-string content
logger.warning(f"Received non-string content: {type(answer_piece)}")
answer_piece = str(answer_piece)
if isinstance(response, AIMessageChunk) and (
response.tool_call_chunks or response.tool_calls
):
tool_call_chunk += response # type: ignore
elif should_stream_answer:
# TODO: handle emitting of CitationInfo
dispatch_custom_event(
"basic_response",
OnyxAnswerPiece(answer_piece=answer_piece),
)
return cast(AIMessageChunk, tool_call_chunk)