mirror of
https://github.com/danswer-ai/danswer.git
synced 2025-08-09 06:22:18 +02:00
improve gpu detection functions and logging in model server
This commit is contained in:
@@ -12,6 +12,7 @@ import voyageai # type: ignore
|
||||
from cohere import AsyncClient as CohereAsyncClient
|
||||
from fastapi import APIRouter
|
||||
from fastapi import HTTPException
|
||||
from fastapi import Request
|
||||
from google.oauth2 import service_account # type: ignore
|
||||
from litellm import aembedding
|
||||
from litellm.exceptions import RateLimitError
|
||||
@@ -320,6 +321,7 @@ async def embed_text(
|
||||
prefix: str | None,
|
||||
api_url: str | None,
|
||||
api_version: str | None,
|
||||
gpu_type: str = "UNKNOWN",
|
||||
) -> list[Embedding]:
|
||||
if not all(texts):
|
||||
logger.error("Empty strings provided for embedding")
|
||||
@@ -373,8 +375,11 @@ async def embed_text(
|
||||
|
||||
elapsed = time.monotonic() - start
|
||||
logger.info(
|
||||
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
|
||||
f"with provider {provider_type} in {elapsed:.2f}"
|
||||
f"event=embedding_provider "
|
||||
f"texts={len(texts)} "
|
||||
f"chars={total_chars} "
|
||||
f"provider={provider_type} "
|
||||
f"elapsed={elapsed:.2f}"
|
||||
)
|
||||
elif model_name is not None:
|
||||
logger.info(
|
||||
@@ -403,6 +408,14 @@ async def embed_text(
|
||||
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
|
||||
f"with local model {model_name} in {elapsed:.2f}"
|
||||
)
|
||||
logger.info(
|
||||
f"event=embedding_model "
|
||||
f"texts={len(texts)} "
|
||||
f"chars={total_chars} "
|
||||
f"model={provider_type} "
|
||||
f"gpu={gpu_type} "
|
||||
f"elapsed={elapsed:.2f}"
|
||||
)
|
||||
else:
|
||||
logger.error("Neither model name nor provider specified for embedding")
|
||||
raise ValueError(
|
||||
@@ -455,8 +468,15 @@ async def litellm_rerank(
|
||||
|
||||
|
||||
@router.post("/bi-encoder-embed")
|
||||
async def process_embed_request(
|
||||
async def route_bi_encoder_embed(
|
||||
request: Request,
|
||||
embed_request: EmbedRequest,
|
||||
) -> EmbedResponse:
|
||||
return await process_embed_request(embed_request, request.app.state.gpu_type)
|
||||
|
||||
|
||||
async def process_embed_request(
|
||||
embed_request: EmbedRequest, gpu_type: str = "UNKNOWN"
|
||||
) -> EmbedResponse:
|
||||
if not embed_request.texts:
|
||||
raise HTTPException(status_code=400, detail="No texts to be embedded")
|
||||
@@ -484,6 +504,7 @@ async def process_embed_request(
|
||||
api_url=embed_request.api_url,
|
||||
api_version=embed_request.api_version,
|
||||
prefix=prefix,
|
||||
gpu_type=gpu_type,
|
||||
)
|
||||
return EmbedResponse(embeddings=embeddings)
|
||||
except RateLimitError as e:
|
||||
|
Reference in New Issue
Block a user