improve gpu detection functions and logging in model server

This commit is contained in:
Richard Kuo (Danswer)
2025-02-07 16:59:02 -08:00
parent ae37f01f62
commit bc2c56dfb6
5 changed files with 54 additions and 17 deletions

View File

@@ -12,6 +12,7 @@ import voyageai # type: ignore
from cohere import AsyncClient as CohereAsyncClient
from fastapi import APIRouter
from fastapi import HTTPException
from fastapi import Request
from google.oauth2 import service_account # type: ignore
from litellm import aembedding
from litellm.exceptions import RateLimitError
@@ -320,6 +321,7 @@ async def embed_text(
prefix: str | None,
api_url: str | None,
api_version: str | None,
gpu_type: str = "UNKNOWN",
) -> list[Embedding]:
if not all(texts):
logger.error("Empty strings provided for embedding")
@@ -373,8 +375,11 @@ async def embed_text(
elapsed = time.monotonic() - start
logger.info(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with provider {provider_type} in {elapsed:.2f}"
f"event=embedding_provider "
f"texts={len(texts)} "
f"chars={total_chars} "
f"provider={provider_type} "
f"elapsed={elapsed:.2f}"
)
elif model_name is not None:
logger.info(
@@ -403,6 +408,14 @@ async def embed_text(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with local model {model_name} in {elapsed:.2f}"
)
logger.info(
f"event=embedding_model "
f"texts={len(texts)} "
f"chars={total_chars} "
f"model={provider_type} "
f"gpu={gpu_type} "
f"elapsed={elapsed:.2f}"
)
else:
logger.error("Neither model name nor provider specified for embedding")
raise ValueError(
@@ -455,8 +468,15 @@ async def litellm_rerank(
@router.post("/bi-encoder-embed")
async def process_embed_request(
async def route_bi_encoder_embed(
request: Request,
embed_request: EmbedRequest,
) -> EmbedResponse:
return await process_embed_request(embed_request, request.app.state.gpu_type)
async def process_embed_request(
embed_request: EmbedRequest, gpu_type: str = "UNKNOWN"
) -> EmbedResponse:
if not embed_request.texts:
raise HTTPException(status_code=400, detail="No texts to be embedded")
@@ -484,6 +504,7 @@ async def process_embed_request(
api_url=embed_request.api_url,
api_version=embed_request.api_version,
prefix=prefix,
gpu_type=gpu_type,
)
return EmbedResponse(embeddings=embeddings)
except RateLimitError as e: