Add new APIs specifically for GPTs

This commit is contained in:
Weves 2023-12-03 01:37:16 -08:00 committed by Chris Weaver
parent f5be0cc2c0
commit fa879f7d7f
2 changed files with 108 additions and 0 deletions

View File

@ -58,6 +58,7 @@ from danswer.server.features.document_set.api import router as document_set_rout
from danswer.server.features.persona.api import admin_router as admin_persona_router
from danswer.server.features.persona.api import basic_router as persona_router
from danswer.server.features.prompt.api import basic_router as prompt_router
from danswer.server.gpts.api import router as gpts_router
from danswer.server.manage.administrative import router as admin_router
from danswer.server.manage.get_state import router as state_router
from danswer.server.manage.slack_bot import router as slack_bot_management_router
@ -137,6 +138,8 @@ def get_application() -> FastAPI:
include_router_with_global_prefix_prepended(application, prompt_router)
include_router_with_global_prefix_prepended(application, state_router)
include_router_with_global_prefix_prepended(application, danswer_api_router)
include_router_with_global_prefix_prepended(application, gpts_router)
if AUTH_TYPE == AuthType.DISABLED:
# Server logs this during auth setup verification step

View File

@ -0,0 +1,105 @@
import math
from datetime import datetime
from fastapi import APIRouter
from fastapi import Depends
from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.db.engine import get_session
from danswer.document_index.factory import get_default_document_index
from danswer.search.access_filters import build_access_filters_for_user
from danswer.search.models import IndexFilters
from danswer.search.models import SearchQuery
from danswer.search.search_runner import full_chunk_search
from danswer.server.danswer_api.ingestion import api_key_dep
from danswer.utils.logger import setup_logger
logger = setup_logger()
router = APIRouter(prefix="/gpts")
def time_ago(dt: datetime) -> str:
# Calculate time difference
now = datetime.now()
diff = now - dt
# Convert difference to minutes
minutes = diff.total_seconds() / 60
# Determine the appropriate unit and calculate the age
if minutes < 60:
return f"~{math.floor(minutes)} minutes"
hours = minutes / 60
if hours < 24:
return f"~{math.floor(hours)} hours"
days = hours / 24
if days < 7:
return f"~{math.floor(days)} days"
weeks = days / 7
if weeks < 4:
return f"~{math.floor(weeks)} weeks"
months = days / 30
return f"~{math.floor(months)} months"
class GptSearchRequest(BaseModel):
query: str
class GptDocChunk(BaseModel):
title: str
content: str
source_type: str
link: str
metadata: dict[str, str | list[str]]
document_age: str
class GptSearchResponse(BaseModel):
matching_document_chunks: list[GptDocChunk]
@router.post("/gpt-document-search")
def gpt_search(
search_request: GptSearchRequest,
_: str | None = Depends(api_key_dep),
db_session: Session = Depends(get_session),
) -> GptSearchResponse:
query = search_request.query
user_acl_filters = build_access_filters_for_user(None, db_session)
final_filters = IndexFilters(
access_control_list=user_acl_filters,
)
search_query = SearchQuery(
query=query,
filters=final_filters,
recency_bias_multiplier=1.0,
skip_llm_chunk_filter=True,
)
top_chunks, __ = full_chunk_search(
query=search_query,
document_index=get_default_document_index(),
)
return GptSearchResponse(
matching_document_chunks=[
GptDocChunk(
title=chunk.semantic_identifier,
content=chunk.content,
source_type=chunk.source_type,
link=chunk.source_links.get(0, "") if chunk.source_links else "",
metadata=chunk.metadata,
document_age=time_ago(chunk.updated_at)
if chunk.updated_at
else "Unknown",
)
for chunk in top_chunks
],
)