libavfilter/dnn: separate conv2d layer from dnn_backend_native.c to a new file
the logic is that one layer in one separated source file to make the source files simple for maintaining. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
parent
c2ab998ff3
commit
5f058dd693
@ -1,6 +1,7 @@
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
|
||||
|
||||
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
||||
|
||||
|
@ -26,6 +26,7 @@
|
||||
#include "dnn_backend_native.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
#include "dnn_backend_native_layer_conv2d.h"
|
||||
|
||||
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
||||
{
|
||||
@ -281,85 +282,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
||||
return model;
|
||||
}
|
||||
|
||||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
||||
|
||||
static int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
|
||||
{
|
||||
float *output;
|
||||
int32_t input_operand_index = input_operand_indexes[0];
|
||||
int number = operands[input_operand_index].dims[0];
|
||||
int height = operands[input_operand_index].dims[1];
|
||||
int width = operands[input_operand_index].dims[2];
|
||||
int channel = operands[input_operand_index].dims[3];
|
||||
const float *input = operands[input_operand_index].data;
|
||||
|
||||
int radius = conv_params->kernel_size >> 1;
|
||||
int src_linesize = width * conv_params->input_num;
|
||||
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
|
||||
int filter_size = conv_params->kernel_size * filter_linesize;
|
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index];
|
||||
output_operand->dims[0] = number;
|
||||
output_operand->dims[1] = height - pad_size * 2;
|
||||
output_operand->dims[2] = width - pad_size * 2;
|
||||
output_operand->dims[3] = conv_params->output_num;
|
||||
output_operand->length = calculate_operand_data_length(output_operand);
|
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
||||
if (!output_operand->data)
|
||||
return -1;
|
||||
output = output_operand->data;
|
||||
|
||||
av_assert0(channel == conv_params->input_num);
|
||||
|
||||
for (int y = pad_size; y < height - pad_size; ++y) {
|
||||
for (int x = pad_size; x < width - pad_size; ++x) {
|
||||
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
||||
output[n_filter] = conv_params->biases[n_filter];
|
||||
|
||||
for (int ch = 0; ch < conv_params->input_num; ++ch) {
|
||||
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
|
||||
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
|
||||
float input_pel;
|
||||
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
|
||||
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
|
||||
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
|
||||
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
|
||||
} else {
|
||||
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
|
||||
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
|
||||
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
|
||||
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
|
||||
}
|
||||
|
||||
|
||||
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
|
||||
kernel_x * conv_params->input_num + ch];
|
||||
}
|
||||
}
|
||||
}
|
||||
switch (conv_params->activation){
|
||||
case RELU:
|
||||
output[n_filter] = FFMAX(output[n_filter], 0.0);
|
||||
break;
|
||||
case TANH:
|
||||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
|
||||
break;
|
||||
case SIGMOID:
|
||||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
|
||||
break;
|
||||
case NONE:
|
||||
break;
|
||||
case LEAKY_RELU:
|
||||
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
|
||||
}
|
||||
}
|
||||
output += conv_params->output_num;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size)
|
||||
{
|
||||
float *output;
|
||||
|
@ -32,10 +32,6 @@
|
||||
|
||||
typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType;
|
||||
|
||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
|
||||
|
||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
|
||||
|
||||
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;
|
||||
|
||||
typedef struct Layer{
|
||||
@ -90,15 +86,6 @@ typedef struct DnnOperand{
|
||||
int32_t usedNumbersLeft;
|
||||
}DnnOperand;
|
||||
|
||||
typedef struct ConvolutionalParams{
|
||||
int32_t input_num, output_num, kernel_size;
|
||||
DNNActivationFunc activation;
|
||||
DNNConvPaddingParam padding_method;
|
||||
int32_t dilation;
|
||||
float *kernel;
|
||||
float *biases;
|
||||
} ConvolutionalParams;
|
||||
|
||||
typedef struct InputParams{
|
||||
int height, width, channels;
|
||||
} InputParams;
|
||||
|
101
libavfilter/dnn/dnn_backend_native_layer_conv2d.c
Normal file
101
libavfilter/dnn/dnn_backend_native_layer_conv2d.c
Normal file
@ -0,0 +1,101 @@
|
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_conv2d.h"
|
||||
|
||||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
||||
|
||||
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
|
||||
{
|
||||
float *output;
|
||||
int32_t input_operand_index = input_operand_indexes[0];
|
||||
int number = operands[input_operand_index].dims[0];
|
||||
int height = operands[input_operand_index].dims[1];
|
||||
int width = operands[input_operand_index].dims[2];
|
||||
int channel = operands[input_operand_index].dims[3];
|
||||
const float *input = operands[input_operand_index].data;
|
||||
|
||||
int radius = conv_params->kernel_size >> 1;
|
||||
int src_linesize = width * conv_params->input_num;
|
||||
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
|
||||
int filter_size = conv_params->kernel_size * filter_linesize;
|
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index];
|
||||
output_operand->dims[0] = number;
|
||||
output_operand->dims[1] = height - pad_size * 2;
|
||||
output_operand->dims[2] = width - pad_size * 2;
|
||||
output_operand->dims[3] = conv_params->output_num;
|
||||
output_operand->length = calculate_operand_data_length(output_operand);
|
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
||||
if (!output_operand->data)
|
||||
return -1;
|
||||
output = output_operand->data;
|
||||
|
||||
av_assert0(channel == conv_params->input_num);
|
||||
|
||||
for (int y = pad_size; y < height - pad_size; ++y) {
|
||||
for (int x = pad_size; x < width - pad_size; ++x) {
|
||||
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
||||
output[n_filter] = conv_params->biases[n_filter];
|
||||
|
||||
for (int ch = 0; ch < conv_params->input_num; ++ch) {
|
||||
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
|
||||
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
|
||||
float input_pel;
|
||||
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
|
||||
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
|
||||
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
|
||||
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
|
||||
} else {
|
||||
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
|
||||
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
|
||||
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
|
||||
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
|
||||
}
|
||||
|
||||
|
||||
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
|
||||
kernel_x * conv_params->input_num + ch];
|
||||
}
|
||||
}
|
||||
}
|
||||
switch (conv_params->activation){
|
||||
case RELU:
|
||||
output[n_filter] = FFMAX(output[n_filter], 0.0);
|
||||
break;
|
||||
case TANH:
|
||||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
|
||||
break;
|
||||
case SIGMOID:
|
||||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
|
||||
break;
|
||||
case NONE:
|
||||
break;
|
||||
case LEAKY_RELU:
|
||||
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
|
||||
}
|
||||
}
|
||||
output += conv_params->output_num;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
39
libavfilter/dnn/dnn_backend_native_layer_conv2d.h
Normal file
39
libavfilter/dnn/dnn_backend_native_layer_conv2d.h
Normal file
@ -0,0 +1,39 @@
|
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
|
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
|
||||
|
||||
#include "dnn_backend_native.h"
|
||||
|
||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
|
||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
|
||||
|
||||
typedef struct ConvolutionalParams{
|
||||
int32_t input_num, output_num, kernel_size;
|
||||
DNNActivationFunc activation;
|
||||
DNNConvPaddingParam padding_method;
|
||||
int32_t dilation;
|
||||
float *kernel;
|
||||
float *biases;
|
||||
} ConvolutionalParams;
|
||||
|
||||
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params);
|
||||
#endif
|
@ -25,6 +25,7 @@
|
||||
|
||||
#include "dnn_backend_tf.h"
|
||||
#include "dnn_backend_native.h"
|
||||
#include "dnn_backend_native_layer_conv2d.h"
|
||||
#include "libavformat/avio.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
|
Loading…
x
Reference in New Issue
Block a user