libavfi/dnn: add LibTorch as one of DNN backend
PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. Official website: https://pytorch.org/. We call the C++ library of PyTorch as LibTorch, the same below. To build FFmpeg with LibTorch, please take following steps as reference: 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/, please select C++/Java for language, and other options as your need. Please download cxx11 ABI version: (libtorch-cxx11-abi-shared-with-deps-*.zip). 2. unzip the file to your own dir, with command unzip libtorch-shared-with-deps-latest.zip -d your_dir 3. export libtorch_root/libtorch/include and libtorch_root/libtorch/include/torch/csrc/api/include to $PATH export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH 4. config FFmpeg with ../configure --enable-libtorch \ --extra-cflag=-I/libtorch_root/libtorch/include \ --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \ --extra-ldflags=-L/libtorch_root/libtorch/lib/ 5. make To run FFmpeg DNN inference with LibTorch backend: ./ffmpeg -i input.jpg -vf \ dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg The LibTorch_model.pt can be generated by Python with torch.jit.script() api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is pytorch official guide about how to convert and load torchscript model. Please note, torch.jit.trace() is not recommanded, since it does not support ambiguous input size. Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
d24b136f53
commit
f4e0664fd1
5
configure
vendored
5
configure
vendored
@ -281,6 +281,7 @@ External library support:
|
||||
--enable-libtheora enable Theora encoding via libtheora [no]
|
||||
--enable-libtls enable LibreSSL (via libtls), needed for https support
|
||||
if openssl, gnutls or mbedtls is not used [no]
|
||||
--enable-libtorch enable Torch as one DNN backend [no]
|
||||
--enable-libtwolame enable MP2 encoding via libtwolame [no]
|
||||
--enable-libuavs3d enable AVS3 decoding via libuavs3d [no]
|
||||
--enable-libv4l2 enable libv4l2/v4l-utils [no]
|
||||
@ -1905,6 +1906,7 @@ EXTERNAL_LIBRARY_LIST="
|
||||
libtensorflow
|
||||
libtesseract
|
||||
libtheora
|
||||
libtorch
|
||||
libtwolame
|
||||
libuavs3d
|
||||
libv4l2
|
||||
@ -2785,7 +2787,7 @@ cbs_vp9_select="cbs"
|
||||
deflate_wrapper_deps="zlib"
|
||||
dirac_parse_select="golomb"
|
||||
dovi_rpu_select="golomb"
|
||||
dnn_suggest="libtensorflow libopenvino"
|
||||
dnn_suggest="libtensorflow libopenvino libtorch"
|
||||
dnn_deps="avformat swscale"
|
||||
error_resilience_select="me_cmp"
|
||||
evcparse_select="golomb"
|
||||
@ -6884,6 +6886,7 @@ enabled libtensorflow && require libtensorflow tensorflow/c/c_api.h TF_Versi
|
||||
enabled libtesseract && require_pkg_config libtesseract tesseract tesseract/capi.h TessBaseAPICreate
|
||||
enabled libtheora && require libtheora theora/theoraenc.h th_info_init -ltheoraenc -ltheoradec -logg
|
||||
enabled libtls && require_pkg_config libtls libtls tls.h tls_configure
|
||||
enabled libtorch && check_cxxflags -std=c++17 && require_cpp libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu -lstdc++ -lpthread
|
||||
enabled libtwolame && require libtwolame twolame.h twolame_init -ltwolame &&
|
||||
{ check_lib libtwolame twolame.h twolame_encode_buffer_float32_interleaved -ltwolame ||
|
||||
die "ERROR: libtwolame must be installed and version must be >= 0.3.10"; }
|
||||
|
@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o
|
||||
|
||||
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
||||
DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o
|
||||
DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o
|
||||
|
||||
OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)
|
||||
|
597
libavfilter/dnn/dnn_backend_torch.cpp
Normal file
597
libavfilter/dnn/dnn_backend_torch.cpp
Normal file
@ -0,0 +1,597 @@
|
||||
/*
|
||||
* Copyright (c) 2024
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* DNN Torch backend implementation.
|
||||
*/
|
||||
|
||||
#include <torch/torch.h>
|
||||
#include <torch/script.h>
|
||||
|
||||
extern "C" {
|
||||
#include "../internal.h"
|
||||
#include "dnn_io_proc.h"
|
||||
#include "dnn_backend_common.h"
|
||||
#include "libavutil/opt.h"
|
||||
#include "queue.h"
|
||||
#include "safe_queue.h"
|
||||
}
|
||||
|
||||
typedef struct THOptions{
|
||||
char *device_name;
|
||||
int optimize;
|
||||
} THOptions;
|
||||
|
||||
typedef struct THContext {
|
||||
const AVClass *c_class;
|
||||
THOptions options;
|
||||
} THContext;
|
||||
|
||||
typedef struct THModel {
|
||||
THContext ctx;
|
||||
DNNModel *model;
|
||||
torch::jit::Module *jit_model;
|
||||
SafeQueue *request_queue;
|
||||
Queue *task_queue;
|
||||
Queue *lltask_queue;
|
||||
} THModel;
|
||||
|
||||
typedef struct THInferRequest {
|
||||
torch::Tensor *output;
|
||||
torch::Tensor *input_tensor;
|
||||
} THInferRequest;
|
||||
|
||||
typedef struct THRequestItem {
|
||||
THInferRequest *infer_request;
|
||||
LastLevelTaskItem *lltask;
|
||||
DNNAsyncExecModule exec_module;
|
||||
} THRequestItem;
|
||||
|
||||
|
||||
#define OFFSET(x) offsetof(THContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
|
||||
static const AVOption dnn_th_options[] = {
|
||||
{ "device", "device to run model", OFFSET(options.device_name), AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
|
||||
{ "optimize", "turn on graph executor optimization", OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_th);
|
||||
|
||||
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
|
||||
{
|
||||
THModel *th_model = (THModel *)task->model;
|
||||
THContext *ctx = &th_model->ctx;
|
||||
LastLevelTaskItem *lltask = (LastLevelTaskItem *)av_malloc(sizeof(*lltask));
|
||||
if (!lltask) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for LastLevelTaskItem\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
task->inference_todo = 1;
|
||||
task->inference_done = 0;
|
||||
lltask->task = task;
|
||||
if (ff_queue_push_back(lltask_queue, lltask) < 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
|
||||
av_freep(&lltask);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void th_free_request(THInferRequest *request)
|
||||
{
|
||||
if (!request)
|
||||
return;
|
||||
if (request->output) {
|
||||
delete(request->output);
|
||||
request->output = NULL;
|
||||
}
|
||||
if (request->input_tensor) {
|
||||
delete(request->input_tensor);
|
||||
request->input_tensor = NULL;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
static inline void destroy_request_item(THRequestItem **arg)
|
||||
{
|
||||
THRequestItem *item;
|
||||
if (!arg || !*arg) {
|
||||
return;
|
||||
}
|
||||
item = *arg;
|
||||
th_free_request(item->infer_request);
|
||||
av_freep(&item->infer_request);
|
||||
av_freep(&item->lltask);
|
||||
ff_dnn_async_module_cleanup(&item->exec_module);
|
||||
av_freep(arg);
|
||||
}
|
||||
|
||||
static void dnn_free_model_th(DNNModel **model)
|
||||
{
|
||||
THModel *th_model;
|
||||
if (!model || !*model)
|
||||
return;
|
||||
|
||||
th_model = (THModel *) (*model)->model;
|
||||
while (ff_safe_queue_size(th_model->request_queue) != 0) {
|
||||
THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
|
||||
destroy_request_item(&item);
|
||||
}
|
||||
ff_safe_queue_destroy(th_model->request_queue);
|
||||
|
||||
while (ff_queue_size(th_model->lltask_queue) != 0) {
|
||||
LastLevelTaskItem *item = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
|
||||
av_freep(&item);
|
||||
}
|
||||
ff_queue_destroy(th_model->lltask_queue);
|
||||
|
||||
while (ff_queue_size(th_model->task_queue) != 0) {
|
||||
TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue);
|
||||
av_frame_free(&item->in_frame);
|
||||
av_frame_free(&item->out_frame);
|
||||
av_freep(&item);
|
||||
}
|
||||
ff_queue_destroy(th_model->task_queue);
|
||||
delete th_model->jit_model;
|
||||
av_opt_free(&th_model->ctx);
|
||||
av_freep(&th_model);
|
||||
av_freep(model);
|
||||
}
|
||||
|
||||
static int get_input_th(void *model, DNNData *input, const char *input_name)
|
||||
{
|
||||
input->dt = DNN_FLOAT;
|
||||
input->order = DCO_RGB;
|
||||
input->layout = DL_NCHW;
|
||||
input->dims[0] = 1;
|
||||
input->dims[1] = 3;
|
||||
input->dims[2] = -1;
|
||||
input->dims[3] = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void deleter(void *arg)
|
||||
{
|
||||
av_freep(&arg);
|
||||
}
|
||||
|
||||
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
|
||||
{
|
||||
LastLevelTaskItem *lltask = NULL;
|
||||
TaskItem *task = NULL;
|
||||
THInferRequest *infer_request = NULL;
|
||||
DNNData input = { 0 };
|
||||
THContext *ctx = &th_model->ctx;
|
||||
int ret, width_idx, height_idx, channel_idx;
|
||||
|
||||
lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
|
||||
if (!lltask) {
|
||||
ret = AVERROR(EINVAL);
|
||||
goto err;
|
||||
}
|
||||
request->lltask = lltask;
|
||||
task = lltask->task;
|
||||
infer_request = request->infer_request;
|
||||
|
||||
ret = get_input_th(th_model, &input, NULL);
|
||||
if ( ret != 0) {
|
||||
goto err;
|
||||
}
|
||||
width_idx = dnn_get_width_idx_by_layout(input.layout);
|
||||
height_idx = dnn_get_height_idx_by_layout(input.layout);
|
||||
channel_idx = dnn_get_channel_idx_by_layout(input.layout);
|
||||
input.dims[height_idx] = task->in_frame->height;
|
||||
input.dims[width_idx] = task->in_frame->width;
|
||||
input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
|
||||
input.dims[channel_idx] * sizeof(float));
|
||||
if (!input.data)
|
||||
return AVERROR(ENOMEM);
|
||||
infer_request->input_tensor = new torch::Tensor();
|
||||
infer_request->output = new torch::Tensor();
|
||||
|
||||
switch (th_model->model->func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
input.scale = 255;
|
||||
if (task->do_ioproc) {
|
||||
if (th_model->model->frame_pre_proc != NULL) {
|
||||
th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type);
|
||||
break;
|
||||
}
|
||||
*infer_request->input_tensor = torch::from_blob(input.data,
|
||||
{1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
|
||||
deleter, torch::kFloat32);
|
||||
return 0;
|
||||
|
||||
err:
|
||||
th_free_request(infer_request);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int th_start_inference(void *args)
|
||||
{
|
||||
THRequestItem *request = (THRequestItem *)args;
|
||||
THInferRequest *infer_request = NULL;
|
||||
LastLevelTaskItem *lltask = NULL;
|
||||
TaskItem *task = NULL;
|
||||
THModel *th_model = NULL;
|
||||
THContext *ctx = NULL;
|
||||
std::vector<torch::jit::IValue> inputs;
|
||||
torch::NoGradGuard no_grad;
|
||||
|
||||
if (!request) {
|
||||
av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
infer_request = request->infer_request;
|
||||
lltask = request->lltask;
|
||||
task = lltask->task;
|
||||
th_model = (THModel *)task->model;
|
||||
ctx = &th_model->ctx;
|
||||
|
||||
if (ctx->options.optimize)
|
||||
torch::jit::setGraphExecutorOptimize(true);
|
||||
else
|
||||
torch::jit::setGraphExecutorOptimize(false);
|
||||
|
||||
if (!infer_request->input_tensor || !infer_request->output) {
|
||||
av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
|
||||
return DNN_GENERIC_ERROR;
|
||||
}
|
||||
inputs.push_back(*infer_request->input_tensor);
|
||||
|
||||
*infer_request->output = th_model->jit_model->forward(inputs).toTensor();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void infer_completion_callback(void *args) {
|
||||
THRequestItem *request = (THRequestItem*)args;
|
||||
LastLevelTaskItem *lltask = request->lltask;
|
||||
TaskItem *task = lltask->task;
|
||||
DNNData outputs = { 0 };
|
||||
THInferRequest *infer_request = request->infer_request;
|
||||
THModel *th_model = (THModel *)task->model;
|
||||
torch::Tensor *output = infer_request->output;
|
||||
|
||||
c10::IntArrayRef sizes = output->sizes();
|
||||
outputs.order = DCO_RGB;
|
||||
outputs.layout = DL_NCHW;
|
||||
outputs.dt = DNN_FLOAT;
|
||||
if (sizes.size() == 4) {
|
||||
// 4 dimensions: [batch_size, channel, height, width]
|
||||
// this format of data is normally used for video frame SR
|
||||
outputs.dims[0] = sizes.at(0); // N
|
||||
outputs.dims[1] = sizes.at(1); // C
|
||||
outputs.dims[2] = sizes.at(2); // H
|
||||
outputs.dims[3] = sizes.at(3); // W
|
||||
} else {
|
||||
avpriv_report_missing_feature(&th_model->ctx, "Support of this kind of model");
|
||||
goto err;
|
||||
}
|
||||
|
||||
switch (th_model->model->func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
if (task->do_ioproc) {
|
||||
outputs.scale = 255;
|
||||
outputs.data = output->data_ptr();
|
||||
if (th_model->model->frame_post_proc != NULL) {
|
||||
th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_dnn_to_frame(task->out_frame, &outputs, &th_model->ctx);
|
||||
}
|
||||
} else {
|
||||
task->out_frame->width = outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
|
||||
task->out_frame->height = outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
|
||||
}
|
||||
break;
|
||||
default:
|
||||
avpriv_report_missing_feature(&th_model->ctx, "model function type %d", th_model->model->func_type);
|
||||
goto err;
|
||||
}
|
||||
task->inference_done++;
|
||||
av_freep(&request->lltask);
|
||||
err:
|
||||
th_free_request(infer_request);
|
||||
|
||||
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
|
||||
destroy_request_item(&request);
|
||||
av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n");
|
||||
}
|
||||
}
|
||||
|
||||
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
|
||||
{
|
||||
THModel *th_model = NULL;
|
||||
LastLevelTaskItem *lltask;
|
||||
TaskItem *task = NULL;
|
||||
int ret = 0;
|
||||
|
||||
if (ff_queue_size(lltask_queue) == 0) {
|
||||
destroy_request_item(&request);
|
||||
return 0;
|
||||
}
|
||||
|
||||
lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
|
||||
if (lltask == NULL) {
|
||||
av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
|
||||
ret = AVERROR(EINVAL);
|
||||
goto err;
|
||||
}
|
||||
task = lltask->task;
|
||||
th_model = (THModel *)task->model;
|
||||
|
||||
ret = fill_model_input_th(th_model, request);
|
||||
if ( ret != 0) {
|
||||
goto err;
|
||||
}
|
||||
if (task->async) {
|
||||
avpriv_report_missing_feature(&th_model->ctx, "LibTorch async");
|
||||
} else {
|
||||
ret = th_start_inference((void *)(request));
|
||||
if (ret != 0) {
|
||||
goto err;
|
||||
}
|
||||
infer_completion_callback(request);
|
||||
return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
|
||||
}
|
||||
|
||||
err:
|
||||
th_free_request(request->infer_request);
|
||||
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
|
||||
destroy_request_item(&request);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int get_output_th(void *model, const char *input_name, int input_width, int input_height,
|
||||
const char *output_name, int *output_width, int *output_height)
|
||||
{
|
||||
int ret = 0;
|
||||
THModel *th_model = (THModel*) model;
|
||||
THContext *ctx = &th_model->ctx;
|
||||
TaskItem task = { 0 };
|
||||
THRequestItem *request = NULL;
|
||||
DNNExecBaseParams exec_params = {
|
||||
.input_name = input_name,
|
||||
.output_names = &output_name,
|
||||
.nb_output = 1,
|
||||
.in_frame = NULL,
|
||||
.out_frame = NULL,
|
||||
};
|
||||
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model, input_height, input_width, ctx);
|
||||
if ( ret != 0) {
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = extract_lltask_from_task(&task, th_model->lltask_queue);
|
||||
if ( ret != 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
request = (THRequestItem*) ff_safe_queue_pop_front(th_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
ret = AVERROR(EINVAL);
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = execute_model_th(request, th_model->lltask_queue);
|
||||
*output_width = task.out_frame->width;
|
||||
*output_height = task.out_frame->height;
|
||||
|
||||
err:
|
||||
av_frame_free(&task.out_frame);
|
||||
av_frame_free(&task.in_frame);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static THInferRequest *th_create_inference_request(void)
|
||||
{
|
||||
THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest));
|
||||
if (!request) {
|
||||
return NULL;
|
||||
}
|
||||
request->input_tensor = NULL;
|
||||
request->output = NULL;
|
||||
return request;
|
||||
}
|
||||
|
||||
static DNNModel *dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DNNModel *model = NULL;
|
||||
THModel *th_model = NULL;
|
||||
THRequestItem *item = NULL;
|
||||
THContext *ctx;
|
||||
|
||||
model = (DNNModel *)av_mallocz(sizeof(DNNModel));
|
||||
if (!model) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
th_model = (THModel *)av_mallocz(sizeof(THModel));
|
||||
if (!th_model) {
|
||||
av_freep(&model);
|
||||
return NULL;
|
||||
}
|
||||
th_model->model = model;
|
||||
model->model = th_model;
|
||||
th_model->ctx.c_class = &dnn_th_class;
|
||||
ctx = &th_model->ctx;
|
||||
//parse options
|
||||
av_opt_set_defaults(ctx);
|
||||
if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
c10::Device device = c10::Device(ctx->options.device_name);
|
||||
if (!device.is_cpu()) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", ctx->options.device_name);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
try {
|
||||
th_model->jit_model = new torch::jit::Module;
|
||||
(*th_model->jit_model) = torch::jit::load(model_filename);
|
||||
} catch (const c10::Error& e) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
th_model->request_queue = ff_safe_queue_create();
|
||||
if (!th_model->request_queue) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
|
||||
if (!item) {
|
||||
goto fail;
|
||||
}
|
||||
item->lltask = NULL;
|
||||
item->infer_request = th_create_inference_request();
|
||||
if (!item->infer_request) {
|
||||
av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch inference request\n");
|
||||
goto fail;
|
||||
}
|
||||
item->exec_module.start_inference = &th_start_inference;
|
||||
item->exec_module.callback = &infer_completion_callback;
|
||||
item->exec_module.args = item;
|
||||
|
||||
if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
|
||||
goto fail;
|
||||
}
|
||||
item = NULL;
|
||||
|
||||
th_model->task_queue = ff_queue_create();
|
||||
if (!th_model->task_queue) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
th_model->lltask_queue = ff_queue_create();
|
||||
if (!th_model->lltask_queue) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
model->get_input = &get_input_th;
|
||||
model->get_output = &get_output_th;
|
||||
model->options = NULL;
|
||||
model->filter_ctx = filter_ctx;
|
||||
model->func_type = func_type;
|
||||
return model;
|
||||
|
||||
fail:
|
||||
if (item) {
|
||||
destroy_request_item(&item);
|
||||
av_freep(&item);
|
||||
}
|
||||
dnn_free_model_th(&model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
|
||||
{
|
||||
THModel *th_model = (THModel *)model->model;
|
||||
THContext *ctx = &th_model->ctx;
|
||||
TaskItem *task;
|
||||
THRequestItem *request;
|
||||
int ret = 0;
|
||||
|
||||
ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params);
|
||||
if (ret != 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
task = (TaskItem *)av_malloc(sizeof(TaskItem));
|
||||
if (!task) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
|
||||
if (ret != 0) {
|
||||
av_freep(&task);
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = ff_queue_push_back(th_model->task_queue, task);
|
||||
if (ret < 0) {
|
||||
av_freep(&task);
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = extract_lltask_from_task(task, th_model->lltask_queue);
|
||||
if (ret != 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
return execute_model_th(request, th_model->lltask_queue);
|
||||
}
|
||||
|
||||
static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out)
|
||||
{
|
||||
THModel *th_model = (THModel *)model->model;
|
||||
return ff_dnn_get_result_common(th_model->task_queue, in, out);
|
||||
}
|
||||
|
||||
static int dnn_flush_th(const DNNModel *model)
|
||||
{
|
||||
THModel *th_model = (THModel *)model->model;
|
||||
THRequestItem *request;
|
||||
|
||||
if (ff_queue_size(th_model->lltask_queue) == 0)
|
||||
// no pending task need to flush
|
||||
return 0;
|
||||
|
||||
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
|
||||
if (!request) {
|
||||
av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
return execute_model_th(request, th_model->lltask_queue);
|
||||
}
|
||||
|
||||
extern const DNNModule ff_dnn_backend_torch = {
|
||||
.load_model = dnn_load_model_th,
|
||||
.execute_model = dnn_execute_model_th,
|
||||
.get_result = dnn_get_result_th,
|
||||
.flush = dnn_flush_th,
|
||||
.free_model = dnn_free_model_th,
|
||||
};
|
@ -28,6 +28,7 @@
|
||||
|
||||
extern const DNNModule ff_dnn_backend_openvino;
|
||||
extern const DNNModule ff_dnn_backend_tf;
|
||||
extern const DNNModule ff_dnn_backend_torch;
|
||||
|
||||
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
|
||||
{
|
||||
@ -40,6 +41,10 @@ const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
|
||||
case DNN_OV:
|
||||
return &ff_dnn_backend_openvino;
|
||||
#endif
|
||||
#if (CONFIG_LIBTORCH == 1)
|
||||
case DNN_TH:
|
||||
return &ff_dnn_backend_torch;
|
||||
#endif
|
||||
default:
|
||||
av_log(log_ctx, AV_LOG_ERROR,
|
||||
"Module backend_type %d is not supported or enabled.\n",
|
||||
|
@ -53,12 +53,22 @@ static char **separate_output_names(const char *expr, const char *val_sep, int *
|
||||
|
||||
int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DNNBackendType backend = ctx->backend_type;
|
||||
|
||||
if (!ctx->model_filename) {
|
||||
av_log(filter_ctx, AV_LOG_ERROR, "model file for network is not specified\n");
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
if (ctx->backend_type == DNN_TF) {
|
||||
if (backend == DNN_TH) {
|
||||
if (ctx->model_inputname)
|
||||
av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require inputname, "\
|
||||
"inputname will be ignored.\n");
|
||||
if (ctx->model_outputnames)
|
||||
av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require outputname(s), "\
|
||||
"all outputname(s) will be ignored.\n");
|
||||
ctx->nb_outputs = 1;
|
||||
} else if (backend == DNN_TF) {
|
||||
if (!ctx->model_inputname) {
|
||||
av_log(filter_ctx, AV_LOG_ERROR, "input name of the model network is not specified\n");
|
||||
return AVERROR(EINVAL);
|
||||
@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData *input)
|
||||
|
||||
int ff_dnn_get_output(DnnContext *ctx, int input_width, int input_height, int *output_width, int *output_height)
|
||||
{
|
||||
char * output_name = ctx->model_outputnames ? ctx->model_outputnames[0] : NULL;
|
||||
char * output_name = ctx->model_outputnames && ctx->backend_type != DNN_TH ?
|
||||
ctx->model_outputnames[0] : NULL;
|
||||
return ctx->model->get_output(ctx->model->model, ctx->model_inputname, input_width, input_height,
|
||||
(const char *)output_name, output_width, output_height);
|
||||
}
|
||||
|
@ -32,7 +32,7 @@
|
||||
|
||||
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
|
||||
|
||||
typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
|
||||
typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
|
||||
|
||||
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
|
||||
|
||||
|
@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = {
|
||||
#endif
|
||||
#if (CONFIG_LIBOPENVINO == 1)
|
||||
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit = "backend" },
|
||||
#endif
|
||||
#if (CONFIG_LIBTORCH == 1)
|
||||
{ "torch", "torch backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS, "backend" },
|
||||
#endif
|
||||
DNN_COMMON_OPTIONS
|
||||
{ NULL }
|
||||
|
Loading…
x
Reference in New Issue
Block a user