Fix a dead lock under certain conditions. Let's assume we have a queue of 1 message max, 2 senders, and 1 receiver. Scenario (real record obtained with debug added): [...] SENDER #0: acquired lock SENDER #0: queue is full, wait SENDER #1: acquired lock SENDER #1: queue is full, wait RECEIVER: acquired lock RECEIVER: reading a msg from the queue RECEIVER: signal the cond RECEIVER: acquired lock RECEIVER: queue is empty, wait SENDER #0: writing a msg the queue SENDER #0: signal the cond SENDER #0: acquired lock SENDER #0: queue is full, wait SENDER #1: queue is full, wait Translated: - initially the queue contains 1/1 message with 2 senders blocking on it, waiting to push another message. - Meanwhile the receiver is obtaining the lock, read the message, signal & release the lock. For some reason it is able to acquire the lock again before the signal wakes up one of the sender. Since it just emptied the queue, the reader waits for the queue to fill up again. - The signal finally reaches one of the sender, which writes a message and then signal the condition. Unfortunately, instead of waking up the reader, it actually wakes up the other worker (signal = notify the condition just for 1 waiter), who can't push another message in the queue because it's full. - Meanwhile, the receiver is still waiting. Deadlock. This scenario can be triggered with for example: tests/api/api-threadmessage-test 1 2 100 100 1 1000 1000 One working solution is to make av_thread_message_queue_{send,recv}() call pthread_cond_broadcast() instead of pthread_cond_signal() so both senders and receivers are unlocked when work is done (be it reading or writing). This second solution replaces the condition with two: one to notify the senders, and one to notify the receivers. This prevents senders from notifying other senders instead of a reader, and the other way around. It also avoid broadcasting to everyone like the first solution, and is, as a result in theory more optimized.
…
…
FFmpeg README
FFmpeg is a collection of libraries and tools to process multimedia content such as audio, video, subtitles and related metadata.
Libraries
libavcodec
provides implementation of a wider range of codecs.libavformat
implements streaming protocols, container formats and basic I/O access.libavutil
includes hashers, decompressors and miscellaneous utility functions.libavfilter
provides a mean to alter decoded Audio and Video through chain of filters.libavdevice
provides an abstraction to access capture and playback devices.libswresample
implements audio mixing and resampling routines.libswscale
implements color conversion and scaling routines.
Tools
- ffmpeg is a command line toolbox to manipulate, convert and stream multimedia content.
- ffplay is a minimalistic multimedia player.
- ffprobe is a simple analysis tool to inspect multimedia content.
- ffserver is a multimedia streaming server for live broadcasts.
- Additional small tools such as
aviocat
,ismindex
andqt-faststart
.
Documentation
The offline documentation is available in the doc/ directory.
The online documentation is available in the main website and in the wiki.
Examples
Coding examples are available in the doc/examples directory.
License
FFmpeg codebase is mainly LGPL-licensed with optional components licensed under GPL. Please refer to the LICENSE file for detailed information.
Contributing
Patches should be submitted to the ffmpeg-devel mailing list using
git format-patch
or git send-email
. Github pull requests should be
avoided because they are not part of our review process. Few developers
follow pull requests so they will likely be ignored.
Description
Languages
C
90.4%
Assembly
7.7%
Makefile
1.3%
C++
0.2%
Objective-C
0.2%
Other
0.1%