htlcswitch: clean circuits and keystones for closed channels

In this commit, a new method `cleanClosedChannels` is added and called
when a circuit map is created. This method will delete the payment
circuits and keystones for closed channels.
This commit is contained in:
yyforyongyu
2021-07-23 09:35:28 +08:00
parent 1274e31dfb
commit 3942c7ca02
2 changed files with 603 additions and 0 deletions

View File

@@ -219,6 +219,11 @@ func NewCircuitMap(cfg *CircuitMapConfig) (CircuitMap, error) {
return nil, err
}
// Delete old circuits and keystones of closed channels.
if err := cm.cleanClosedChannels(); err != nil {
return nil, err
}
// Load any previously persisted circuit into back into memory.
if err := cm.restoreMemState(); err != nil {
return nil, err
@@ -250,6 +255,216 @@ func (cm *circuitMap) initBuckets() error {
}, func() {})
}
// cleanClosedChannels deletes all circuits and keystones related to closed
// channels. It first reads all the closed channels and caches the ShortChanIDs
// into a map for fast lookup. Then it iterates the circuit bucket and keystone
// bucket and deletes items whose ChanID matches the ShortChanID.
//
// NOTE: this operation can also be built into restoreMemState since the latter
// already opens and iterates the two root buckets, circuitAddKey and
// circuitKeystoneKey. Depending on the size of the buckets, this marginal gain
// may be worth investigating. Atm, for clarity, this operation is wrapped into
// its own function.
func (cm *circuitMap) cleanClosedChannels() error {
log.Infof("Cleaning circuits from disk for closed channels")
// closedChanIDSet stores the short channel IDs for closed channels.
closedChanIDSet := make(map[lnwire.ShortChannelID]struct{})
// circuitKeySet stores the incoming circuit keys of the payment
// circuits that need to be deleted.
circuitKeySet := make(map[CircuitKey]struct{})
// keystoneKeySet stores the outgoing keys of the keystones that need
// to be deleted.
keystoneKeySet := make(map[CircuitKey]struct{})
// isClosedChannel is a helper closure that returns a bool indicating
// the chanID belongs to a closed channel.
isClosedChannel := func(chanID lnwire.ShortChannelID) bool {
// Skip if the channel ID is zero value. This has the effect
// that a zero value incoming or outgoing key will never be
// matched and its corresponding circuits or keystones are not
// deleted.
if chanID.ToUint64() == 0 {
return false
}
_, ok := closedChanIDSet[chanID]
return ok
}
// Find closed channels and cache their ShortChannelIDs into a map.
// This map will be used for looking up relative circuits and keystones.
closedChannels, err := cm.cfg.DB.FetchClosedChannels(false)
if err != nil {
return err
}
for _, closedChannel := range closedChannels {
// Skip if the channel close is pending.
if closedChannel.IsPending {
continue
}
closedChanIDSet[closedChannel.ShortChanID] = struct{}{}
}
log.Debugf("Found %v closed channels", len(closedChanIDSet))
// Exit early if there are no closed channels.
if len(closedChanIDSet) == 0 {
log.Infof("Finished cleaning: no closed channels found, " +
"no actions taken.",
)
return nil
}
// Find the payment circuits and keystones that need to be deleted.
if err := kvdb.View(cm.cfg.DB, func(tx kvdb.RTx) error {
circuitBkt := tx.ReadBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
keystoneBkt := tx.ReadBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
// If a circuit's incoming/outgoing key prefix matches the
// ShortChanID, it will be deleted. However, if the ShortChanID
// of the incoming key is zero, the circuit will be kept as it
// indicates a locally initiated payment.
if err := circuitBkt.ForEach(func(_, v []byte) error {
circuit, err := cm.decodeCircuit(v)
if err != nil {
return err
}
// Check if the incoming channel ID can be found in the
// closed channel ID map.
if !isClosedChannel(circuit.Incoming.ChanID) {
return nil
}
circuitKeySet[circuit.Incoming] = struct{}{}
return nil
}); err != nil {
return err
}
// If a keystone's InKey or OutKey matches the short channel id
// in the closed channel ID map, it will be deleted.
err := keystoneBkt.ForEach(func(k, v []byte) error {
var (
inKey CircuitKey
outKey CircuitKey
)
// Decode the incoming and outgoing circuit keys.
if err := inKey.SetBytes(v); err != nil {
return err
}
if err := outKey.SetBytes(k); err != nil {
return err
}
// Check if the incoming channel ID can be found in the
// closed channel ID map.
if isClosedChannel(inKey.ChanID) {
// If the incoming channel is closed, we can
// skip checking on outgoing channel ID because
// this keystone will be deleted.
keystoneKeySet[outKey] = struct{}{}
// Technically the incoming keys found in
// keystone bucket should be a subset of
// circuit bucket. So a previous loop should
// have this inKey put inside circuitAddKey map
// already. We do this again to be sure the
// circuits are properly cleaned. Even this
// inKey doesn't exist in circuit bucket, we
// are fine as db deletion is a noop.
circuitKeySet[inKey] = struct{}{}
return nil
}
// Check if the outgoing channel ID can be found in the
// closed channel ID map. Notice that we need to store
// the outgoing key because it's used for db query.
if isClosedChannel(outKey.ChanID) {
keystoneKeySet[outKey] = struct{}{}
// Also update circuitKeySet to mark the
// payment circuit needs to be deleted.
circuitKeySet[inKey] = struct{}{}
}
return nil
})
return err
}, func() {
// Reset the sets.
circuitKeySet = make(map[CircuitKey]struct{})
keystoneKeySet = make(map[CircuitKey]struct{})
}); err != nil {
return err
}
log.Debugf("To be deleted: num_circuits=%v, num_keystones=%v",
len(circuitKeySet), len(keystoneKeySet),
)
numCircuitsDeleted := 0
numKeystonesDeleted := 0
// Delete all the circuits and keystones for closed channels.
if err := kvdb.Update(cm.cfg.DB, func(tx kvdb.RwTx) error {
circuitBkt := tx.ReadWriteBucket(circuitAddKey)
if circuitBkt == nil {
return ErrCorruptedCircuitMap
}
keystoneBkt := tx.ReadWriteBucket(circuitKeystoneKey)
if keystoneBkt == nil {
return ErrCorruptedCircuitMap
}
// Delete the ciruit.
for inKey := range circuitKeySet {
if err := circuitBkt.Delete(inKey.Bytes()); err != nil {
return err
}
numCircuitsDeleted++
}
// Delete the keystone using the outgoing key.
for outKey := range keystoneKeySet {
err := keystoneBkt.Delete(outKey.Bytes())
if err != nil {
return err
}
numKeystonesDeleted++
}
return nil
}, func() {}); err != nil {
numCircuitsDeleted = 0
numKeystonesDeleted = 0
return err
}
log.Infof("Finished cleaning: num_closed_channel=%v, "+
"num_circuits=%v, num_keystone=%v",
len(closedChannels), numCircuitsDeleted, numKeystonesDeleted,
)
return nil
}
// restoreMemState loads the contents of the half circuit and full circuit
// buckets from disk and reconstructs the in-memory representation of the
// circuit map. Afterwards, the state of the hash index is reconstructed using

View File

@@ -0,0 +1,388 @@
package htlcswitch_test
import (
"bytes"
"fmt"
"io"
"testing"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
var (
// closedChannelBucket stores summarization information concerning
// previously open, but now closed channels.
closedChannelBucket = []byte("closed-chan-bucket")
)
// TestCircuitMapCleanClosedChannels checks that the circuits and keystones are
// deleted for closed channels upon restart.
func TestCircuitMapCleanClosedChannels(t *testing.T) {
t.Parallel()
var (
// chanID0 is a zero value channel ID indicating a locally
// initiated payment.
chanID0 = lnwire.NewShortChanIDFromInt(uint64(0))
chanID1 = lnwire.NewShortChanIDFromInt(uint64(1))
chanID2 = lnwire.NewShortChanIDFromInt(uint64(2))
inKey00 = htlcswitch.CircuitKey{ChanID: chanID0, HtlcID: 0}
inKey10 = htlcswitch.CircuitKey{ChanID: chanID1, HtlcID: 0}
inKey11 = htlcswitch.CircuitKey{ChanID: chanID1, HtlcID: 1}
inKey20 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 0}
inKey21 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 1}
inKey22 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 2}
outKey00 = htlcswitch.CircuitKey{ChanID: chanID0, HtlcID: 0}
outKey10 = htlcswitch.CircuitKey{ChanID: chanID1, HtlcID: 0}
outKey11 = htlcswitch.CircuitKey{ChanID: chanID1, HtlcID: 1}
outKey20 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 0}
outKey21 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 1}
outKey22 = htlcswitch.CircuitKey{ChanID: chanID2, HtlcID: 2}
)
type closeChannelParams struct {
chanID lnwire.ShortChannelID
isPending bool
}
testParams := []struct {
name string
// keystones is used to create and open circuits. A keystone is
// a pair of circuit keys, inKey and outKey, with the outKey
// optionally being empty. If a keystone with an outKey is used,
// a circuit will be created and opened, thus creating a circuit
// and a keystone in the DB. Otherwise, only the circuit is
// created.
keystones []htlcswitch.Keystone
chanParams []closeChannelParams
deleted []htlcswitch.Keystone
untouched []htlcswitch.Keystone
}{
{
name: "no deletion if there are no closed channels",
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey10, OutKey: outKey10},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey10, OutKey: outKey10},
},
},
{
name: "no deletion if channel is pending close",
chanParams: []closeChannelParams{
// Creates a pending close channel.
{chanID: chanID1, isPending: true},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey10, OutKey: outKey10},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey10, OutKey: outKey10},
},
},
{
name: "no deletion if the chanID is zero value",
chanParams: []closeChannelParams{
// Creates a close channel with chanID0.
{chanID: chanID0, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey00, OutKey: outKey00},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey00, OutKey: outKey00},
},
},
{
name: "delete half circuits on inKey match",
chanParams: []closeChannelParams{
// Creates a close channel with chanID1.
{chanID: chanID1, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit, no keystone created
{InKey: inKey10},
// Creates a circuit, no keystone created
{InKey: inKey11},
// Creates a circuit and a keystone
{InKey: inKey20, OutKey: outKey20},
},
deleted: []htlcswitch.Keystone{
{InKey: inKey00}, {InKey: inKey11},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey20, OutKey: outKey20},
},
},
{
name: "delete half circuits on outKey match",
chanParams: []closeChannelParams{
// Creates a close channel with chanID1.
{chanID: chanID1, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey20, OutKey: outKey10},
// Creates a circuit and a keystone
{InKey: inKey21, OutKey: outKey11},
// Creates a circuit and a keystone
{InKey: inKey22, OutKey: outKey21},
},
deleted: []htlcswitch.Keystone{
{InKey: inKey20, OutKey: outKey10},
{InKey: inKey21, OutKey: outKey11},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey22, OutKey: outKey21},
},
},
{
name: "delete full circuits on inKey match",
chanParams: []closeChannelParams{
// Creates a close channel with chanID1.
{chanID: chanID1, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey10, OutKey: outKey20},
// Creates a circuit and a keystone
{InKey: inKey11, OutKey: outKey21},
// Creates a circuit and a keystone
{InKey: inKey20, OutKey: outKey22},
},
deleted: []htlcswitch.Keystone{
{InKey: inKey10, OutKey: outKey20},
{InKey: inKey11, OutKey: outKey21},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey20, OutKey: outKey22},
},
},
{
name: "delete full circuits on outKey match",
chanParams: []closeChannelParams{
// Creates a close channel with chanID1.
{chanID: chanID1, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey20, OutKey: outKey10},
// Creates a circuit and a keystone
{InKey: inKey21, OutKey: outKey11},
// Creates a circuit and a keystone
{InKey: inKey22, OutKey: outKey20},
},
deleted: []htlcswitch.Keystone{
{InKey: inKey20, OutKey: outKey10},
{InKey: inKey21, OutKey: outKey11},
},
untouched: []htlcswitch.Keystone{
{InKey: inKey22, OutKey: outKey20},
},
},
{
name: "delete all circuits",
chanParams: []closeChannelParams{
// Creates a close channel with chanID1.
{chanID: chanID1, isPending: false},
// Creates a close channel with chanID2.
{chanID: chanID2, isPending: false},
},
keystones: []htlcswitch.Keystone{
// Creates a circuit and a keystone
{InKey: inKey20, OutKey: outKey10},
// Creates a circuit and a keystone
{InKey: inKey21, OutKey: outKey11},
// Creates a circuit and a keystone
{InKey: inKey22, OutKey: outKey20},
},
deleted: []htlcswitch.Keystone{
{InKey: inKey20, OutKey: outKey10},
{InKey: inKey21, OutKey: outKey11},
{InKey: inKey22, OutKey: outKey20},
},
},
}
for _, tt := range testParams {
test := tt
t.Run(test.name, func(t *testing.T) {
cfg, circuitMap := newCircuitMap(t)
// create test circuits
for _, ks := range test.keystones {
err := createTestCircuit(ks, circuitMap)
require.NoError(
t, err,
"failed to create test circuit",
)
}
// create close channels
err := kvdb.Update(cfg.DB, func(tx kvdb.RwTx) error {
for _, channel := range test.chanParams {
if err := createTestCloseChannelSummery(
tx, channel.isPending,
channel.chanID,
); err != nil {
return err
}
}
return nil
}, func() {})
require.NoError(
t, err,
"failed to create close channel summery",
)
// Now, restart the circuit map, and check that the
// circuits and keystones of closed channels are
// deleted in DB.
_, circuitMap = restartCircuitMap(t, cfg)
// Check that items are deleted. LookupCircuit and
// LookupOpenCircuit will check the cached circuits,
// which are loaded on restart from the DB.
for _, ks := range test.deleted {
assertKeystoneDeleted(t, circuitMap, ks)
}
// We also check we are not deleting wanted circuits.
for _, ks := range test.untouched {
assertKeystoneNotDeleted(t, circuitMap, ks)
}
})
}
}
// createTestCircuit creates a circuit for testing with its incoming key being
// the keystone's InKey. If the keystone has an OutKey, the circuit will be
// opened, which causes a Keystone to be created in DB.
func createTestCircuit(ks htlcswitch.Keystone, cm htlcswitch.CircuitMap) error {
circuit := &htlcswitch.PaymentCircuit{
Incoming: ks.InKey,
ErrorEncrypter: testExtracter,
}
// First we will try to add an new circuit to the circuit map, this
// should succeed.
_, err := cm.CommitCircuits(circuit)
if err != nil {
return fmt.Errorf("failed to commit circuits: %v", err)
}
// If the keystone has no outgoing key, we won't open it.
if ks.OutKey == htlcswitch.EmptyCircuitKey {
return nil
}
// Open the circuit, implicitly creates a keystone on disk.
err = cm.OpenCircuits(ks)
if err != nil {
return fmt.Errorf("failed to open circuits: %v", err)
}
return nil
}
// assertKeystoneDeleted checks that a given keystone is deleted from the
// circuit map.
func assertKeystoneDeleted(t *testing.T,
cm htlcswitch.CircuitLookup, ks htlcswitch.Keystone) {
c := cm.LookupCircuit(ks.InKey)
require.Nil(t, c, "no circuit should be found using InKey")
if ks.OutKey != htlcswitch.EmptyCircuitKey {
c = cm.LookupOpenCircuit(ks.OutKey)
require.Nil(t, c, "no circuit should be found using OutKey")
}
}
// assertKeystoneDeleted checks that a given keystone is not deleted from the
// circuit map.
func assertKeystoneNotDeleted(t *testing.T,
cm htlcswitch.CircuitLookup, ks htlcswitch.Keystone) {
c := cm.LookupCircuit(ks.InKey)
require.NotNil(t, c, "expecting circuit found using InKey")
if ks.OutKey != htlcswitch.EmptyCircuitKey {
c = cm.LookupOpenCircuit(ks.OutKey)
require.NotNil(t, c, "expecting circuit found using OutKey")
}
}
// createTestCloseChannelSummery creates a CloseChannelSummery for testing.
func createTestCloseChannelSummery(tx kvdb.RwTx, isPending bool,
chanID lnwire.ShortChannelID) error {
closedChanBucket, err := tx.CreateTopLevelBucket(closedChannelBucket)
if err != nil {
return err
}
outputPoint := wire.OutPoint{Hash: hash1, Index: 1}
ccs := &channeldb.ChannelCloseSummary{
ChanPoint: outputPoint,
ShortChanID: chanID,
ChainHash: hash1,
ClosingTXID: hash2,
CloseHeight: 100,
RemotePub: testEphemeralKey,
Capacity: btcutil.Amount(10000),
SettledBalance: btcutil.Amount(50000),
CloseType: channeldb.RemoteForceClose,
IsPending: isPending,
}
var b bytes.Buffer
if err := serializeChannelCloseSummary(&b, ccs); err != nil {
return err
}
var chanPointBuf bytes.Buffer
if err := lnwire.WriteOutPoint(&chanPointBuf, outputPoint); err != nil {
return err
}
return closedChanBucket.Put(chanPointBuf.Bytes(), b.Bytes())
}
func serializeChannelCloseSummary(
w io.Writer,
cs *channeldb.ChannelCloseSummary) error {
err := channeldb.WriteElements(
w,
cs.ChanPoint, cs.ShortChanID, cs.ChainHash, cs.ClosingTXID,
cs.CloseHeight, cs.RemotePub, cs.Capacity, cs.SettledBalance,
cs.TimeLockedBalance, cs.CloseType, cs.IsPending,
)
if err != nil {
return err
}
// If this is a close channel summary created before the addition of
// the new fields, then we can exit here.
if cs.RemoteCurrentRevocation == nil {
return channeldb.WriteElements(w, false)
}
return nil
}